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ispresented in part | of the series. The PPE may be partitioned into the atmospheric section (denoted as the PPE)
and the surface section (termed the surface PPE) , and mathematical expressions of every-order moment term of the
PPE are given. Combined with data analyses, it can be pointed out that all of higher order moment termsof the PPE
than two order are small in magnitude and may be omitted in comparison with the first and second order moment
terms of the PPE, and that the second-order moment term of the PPE averaged over the globejust is equal to tradi-
tional available potential energy (A PE) , but thereis evident differencein physical sense between them. Based on the
NCEP/ NCAR reanalyss data, the spatio-temporal structuresof the PPE and their linkages with the atmospheric ki-
netic energy (A KE) are examined. Thefirst-order moment term of the PPE is positive over the tropics and negative
over high-latitude regions, whereas the second-moment term of the PPE isfeatured by maxima over both the tropics
and high latitudes and by minima over both the subtropics and middle-latitude regions, that isto say, which isfea
tured by three peaks and two valleysin the meridional direction. Locally, asthefirst-order moment term of the PPE
i's superior to the second-order one in order of magnitude, the distributions of the PPE are quite smilar to thefirst-
order moment term. In the vertica direction, the PPE mostly existsin the low troposphere and quickly decreasesin
magnitude as height increases, which can be omitted above 50 hPa level. On the other hand, the PPE is character-
ized clearly by evident seasonal variations and islarger in the winter hemisphere than in the summer hemisphere over
highrlatitude regions. The amplitudes of seasonal variationsfor the first-order moment term of the PPE averaged in
the Southern or Northern Hemispheres are appropriately twenty times larger than those of the corresponding second
order moment term. Against the seasons, the troughs and ridges of the PPE stationary waves show s gnificant zonal
movements in the Northern Hemisphere, however , those in the Southern Hemisphere only show the changesin amr
plitudes. The analyses further show that on local-regional scales, there exists a sgnificant negative correlation be-
tween the A KE and the first-order moment PPE on seasonal march, but the relationship between the A KE and the
second-order moment term is uncertain. However , on global or hemispheric scale, the ratiosof the A KE to the sec-
ond-order moment term of the PPE are basically invariable and about 20 %. Furthermore, the analyseson the spatio-
temporal structures of the total A KE exhibit some new results different from those of the previous researches. Mo-
reover , some further relative problems explored by usng the concept and theory of the PPE, such as analyssof en
ergy budget in loca circulation, role of the surface PPE, and their applications to the studies on atmospheric general
circulation variability , will be given in the future papers of the series.
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2 1961 2000 P K K/ Pz
Table 2 The second-order moment term Px of column-integrated atmospher ic pertur bation potential energy, column-integrated to-
tal kinetic energy K and their ratio K/ Px averaged over the SH, NH and the globe, respectively, for the period of 1961 ~ 2000

Px/ 108 K/ 10°J Kl P2 (%)

Month SH NH Gobe SH NH Gobe SH NH Gobe
Jan 3.51 6.20 4.85 0.74 1.40 1.07 21 23 22
Feb 3.84 6.15 5.00 0.76 1.38 1.07 20 22 21
Mar 4.46 5.58 5.02 0.80 1.14 0.97 18 21 19
Apr 5.12 4.47 4.80 0.94 0.82 0.88 18 18 18
May 5.79 3.44 4.62 1.18 0.57 0.87 20 16 19
Jun 6.42 2.77 4.59 1.40 0.45 0.93 22 16 20
Jul 7.06 2.54 4.80 1.56 0.43 0.99 22 17 21
Aug 7.24 2.64 4.94 1.61 0.44 1.02 22 17 21
Sep 6.63 2.98 4.81 1.49 0.48 0.99 23 16 21
Oct 5.32 3.77 4.54 1.24 0.63 0.94 23 17 21
Nov 4.08 4.87 4.47 0.94 0.92 0.93 23 19 21
Dec 3.54 5.69 4.61 0.78 1.22 1.00 22 21 22

5.25 4.26 4.75 1.12 0.82 0.97 21 19 20

Annua mean
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50°N, 100°E  40°W) ; (d) (20°S 30°S, 150°E 150°W) ; (e) (0° 25°N, 100°E 125°FE) ; (f) (55°S 65°S, 0° 60°E)

Fig.12 Seaond variationsof regonraveraged ool umrrintegrated atmospheric kinetic energy (thick olid line, Ieft coordinate) , thefirg-order mo-
ment term (thin olid line, right coordinate) and seoond-order moment term (dashed line, subrright coordinate) of columnrintegrated atmogpheric
perturbation potentid energy (105J m-?) : (a) Regon (30°N ~50°N, 100°E~ 18C0°E) ; (b) regon (10°N ~4C°N, 100°E~ 14C0°E) ; (0) regon (30°
N~ 50PN, 100°E~ 40°W) ; (d) regon (20°S™ 30°S, 150°E~ 150°W) ; (e) regon (- 25°N, 100°E~ 125°F) ; (f) regon (55°S~ 65’S, O 60°E)
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