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　　基于非线性时间序列分析方法———动力学相关因子指数 ,提出一种新的动力结构突变的检测方法———动力学

指数分割算法.通过理想时间序列试验 ,验证了该方法检测动力结构突变的有效性 ,同时发现相对少量的尖峰噪声

对该方法的影响较小 ,但连续分布的随机白噪声对其具有一定的影响 ,并与传统的滑动 T检验法和 Yamamoto法进

行比较 ,进而讨论它们各自的优缺点.
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11引 言

时间序列分析是一门涉及到几乎一切科学和技

术的学问 ,并且已经有了相当长的历史和成就 ,突变

分析是时间序列研究的一个重要方面[1 ,2 ]
. 20 世纪

60年代中期开始 ,以 Thom
[3 ]的工作为先导 ,逐步形

成了突变理论 ,并被广泛地应用于气候、地震、医学

等研究领域.所谓突变就是指系统发生了突然的变

化 ,是系统对外界条件的光滑变化而做出的突然响

应.突变主要包括高等突变和初等突变 ,通常所说的

突变一般指初等突变 ,如均值突变、频率突变、趋势

突变和方差突变等.目前对突变理论的研究大多集

中于这些传统型突变 ,研究的方法也较多 ,主要有 :

滤波检测法、滑动 t ,F检测法、Yamamoto 法等 ,但这

些方法本质上还是统计和线性的 ,对物理过程的描

述不太明显[4—6 ]
.另外 ,有些统计方法本身还存在一

定的缺陷 ,如滑动 t ,F检测法检测均值突变时 ,经常

会检测到一些虚假的突变点[7—9 ]
.气候系统等许多

实际系统的演化和发展可能受一个或多个驱动因子

的控制 ,往往表现为非线性、非平稳性和复杂性 ,其

内在的动力结构也可能随着驱动因子的改变而发生

快速的变化 ,即其内在的演化方程发生了突变———

动力结构突变[10 ]
.目前关于这方面研究的理论和方

法还相对较少 ,迄今为止 ,相对于气候动力系统“还

没有一套使人们普遍接受的方法认定多长的时域

内、哪些空间点属于同一动力系统”[11 ]
.由于存在受

外强迫和仪器本身的测量误差等因素的影响 ,观测

数据中经常包含噪声和扰动等一些虚假信息 ,尽管

可以对原始数据进行滤波处理 ,但并不能完全消除

噪声 ,因此从非线性角度提出一种对噪声不太敏感

的动力结构突变的检测方法 ,进而研究这些突变形

成的物理机制 ,对于更好的分析非线性时间序列的

本质特征具有重要的现实意义[12 ]
.针对上述问题 ,

本文首先基于非线性时间序列分析方法———动力学

相关因子指数 ,提出一种新的动力结构突变的检测

方法———动力学指数分割算法 (下文简称 Q算法) .

通过构造多组理想时间序列对 Q 算法检测动力结

构突变的有效性及尖峰噪声和白噪声对该方法的影

响做了初步的讨论 ,就传统的检测方法和 Q算法进

行了比较 ,进而分析他们各自的优缺点.

21动力学指数分割算法及其物理意义

动力学相关因子指数是基于相空间重构理论的
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时间序列动力结构分析方法 ,其构造方法和物理意

义如下 :

对一个长度为 N 的时间序列{ x ( t ) , t = 1 ,2 ,

⋯, N}进行嵌入空间上动力学轨线重构[13 ] ,其嵌入

向量表达式为

Xi = { x ( ti ) , x ( ti +τ) ⋯x ( ti + ( m - 1)τ) } ,

(1)

其中τ=αΔt 为时间延迟 ,α为延迟参数 ,Δt 为采

样时间间隔 , m 为嵌入空间维数.对序列的每个点

重构后 ,组成了一个 N -α( m - 1) ×m 维的向量

矩阵

X = { Xi , i = 1 ,2 ,⋯, N - α( m - 1) } , (2)

它的自关联和定义为[14 ]

Cxx (ε) = P ‖Xi - Xj ‖≤ε

=
2

( N - αm) N - α( m - 1)

× 6
N -αm

i = 1
6

N -α( m - 1)

j = i +1

Θε - ‖Xi - Xj ‖ ,(3)

表示在重构空间里ε距离内找到邻近点 Xi 的概率 ,

Θ( h)为 Heaviside阶跃函数.在描述混沌信号时 ,自

关联和具有一定区分潜在动力学结构的能力 ,但它

还远不能作为识别混沌时间序列间相近性最重要的

标准[14—17 ]
.

如何更好地识别混沌时间序列动力异同性呢 ?

文献[18—20 ]初步回答了这一问题.假设{ xi }和{ xj }

是离散序列上的两点 ,当 x ( i) - x ( j) ≤ε时 , x ( i

+ 1) - x ( j + 1) ≤ε的概率 Sm = C
m + 1
xx (ε)ΠC

m
xx (ε)比

自关联和具有更强的预见性 ,可用于两个时间序列集

动力异同性的识别.对于两个时间序列{ xi } ,{ yi } , 动

力学自相关因子指数 Qxy定义为
[18—20]

Qxy = lim
ε→0

ln
Cxx (ε)
Cyy (ε) , (4)

其物理意义是当 Qxy统计上足够小时 ,序列集{ xi }、

{ yi }至少具有相近的动力结构 ,否则就不具有相近

的动力学特征.研究表明它能起到直接测量混沌时

间序列之间“距离”的作用[16 ]、能有效区分不同动力

系统 ,尤其是它能处理较短的时间序列.根据已有的

研究[21 ]
, m可取 3—4 ,α取 1—4.

基于动力学相关因子指数的分割算法的构造和

物理意义介绍如下 :取一宽度为 n 的滑动窗口 W ,

分别计算 x ( t)中 n 至 N - n 各点左右两个窗口的

动力学指数 Q1 ( i)和 Q2 ( i)以及标准偏差 s1 ( i)和

s2 ( i) .计算 Q 指数时 ,一般以原序列为参考窗口 ,

本文将原序列划分为若干个宽度为 n的窗口{ Wi } ,

分别将其作为参考窗口并计算动力学相关因子指数

值 ,最后求统计平均 ,则 i点的合并偏差 sD ( i)为

sD ( i) =
1
n
×[ s1 ( i)

2
+ s2 ( i)

2
]

1Π2
,

( i = n , n + 1 ,⋯, N - n) (5)

我们用统计值 T ( i)来量化表示 i 点左右两个窗口

动力学指数的差异 ,即

T ( i) = λ×
Q1 ( i) - Q2 ( i)

sD ( i)
, (6)

其中λ为缩放因子 ,一般可取 3—6 ,则得到长度为

N - 2 n的检验统计值序列 T ( t) , T越大 ,表示该点

左右两部份动力结构的差异越大.计算 T ( t)中的最

大值 Tmax的统计显著性水平 P ( Tmax) :

P ( Tmax) = P (τ≤ Tmax) , (7)

P ( Tmax)表示在随机过程中取到τ值小于等于 Tmax

的概率. P ( Tmax)可近似表示如下 :

P ( Tmax) ≈ 1 - I (νΠν+ T
2
max

) (δν,δ)
η

, (8)

由蒙特卡洛模拟可得到 :η= 4119ln N - 11154 ,δ=

0140 , N 是时间序列 x ( t)的长度 ,ν= N - 2 , Ix ( a , b)

为不完全β函数.我们设定一个临界值 P0 ,如果 P

( Tmax) ≥P0 则于该点将 x ( t)分割成两段动力结构

有一定差异 (差异的程度随 P0 的取值变化)的子序

列 ,否则不分割[22 ]
.对新得到的两个子序列分别重

复上述操作 ,直至所有的子序列都不可分割.为确保

统计的有效性 ,当子序列的长度小于等于 l0 (最小

分割尺度)时不再对其进行分割.动力学相关因子指

数的物理意义表明 :通过上述操作 ,我们将原序列分

割为若干表征不同动力结构的子序列 ,各子序列分

别包含了不同层次信息 ,分割点即为动力结构突变

点.根据已有的工作[23 ,24 ] , l0 的取值不小于 25 , P0

可取 015—0199 (视具体的分割要求和资料特点

而定) .

31理想时间序列的构建和检测

本节就如何应用 Q 算法识别动力系统发生了

改变作初步的研究.不失一般性 ,这里给出简单情形

下 Q算法对理想时间序列动力结构的诊断试验 :我

们构建一理想时间序列 x ( t) (2000个点) ,因为构建

的理想序列为无量纲的数值序列 ,因此本文从无量

纲的角度进行分析 ,其动力学方程组为
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x ( t) =

2sin (015 t) + 115cos (012 t) + 011 ,　　 ( t < 1000)

e
tΠ3000

+ 2sin (012 t) ,　　　　　　　　 (1000 ≤ t < 1500)

tan (πt) + 2sin (012 t) + 2 ,　　　　　　(1500 ≤ t ≤2000)

(9)

由 (9)式可知 ,该时间序列包含如下三种子序列 :

(1)当 t < 1000时 ,子序列由正弦和余弦函数叠

加得到 ;

(2)当 1000≤t < 1500时 ,子序列由指数函数和

正弦函数叠加得到 ;

(3)当 1500≤t ≤2000时 ,子序列由正切和余弦

函数叠加得到.

图 1　理想时间序列及其 Q算法检测结果 　(a)为理想序列 , (b) , (c) , (d)分别为点 80—1920 ,点 1083—

1920和点 80—823的 T值曲线

三段子序列分别代表了不同的动力结构 , t0 =

1000 ,1500 分别为两个动力结构突变点 (图 1 (a) ) .

取窗口宽度 n = 80 , l0 = 100 , P0 = 0199 ,对该序列进

行检测.图 1 (b)为点 80—1920的 T值曲线 ,可以看

出 ,点 80—1920的 T值曲线存在两个明显的大值区

920—1080和 1420—1580 ,这两个大值区与原序列结

构突变点的位置相对应 ,故用 Q 算法进行检测时 ,

结构突变点一般出现在 T 值较大的区域. t = 1003

时有 Tmax1 ,此时 P ( Tmax1 ) > 0199 ,在该处原序列被分

割为两段 ;对新得到的子序列继续用 Q算法进行处

理 ,图 1 (c)为点 1083—1920的 T值曲线 ,结构突变

点 1500 附近同样存在一个大值区 ,该区域中 t =

1485时有 Tmax2 ,此时 P ( Tmax2 ) > 0199 ,故在 1485处

该子序列被二次分割 ;对子序列 1—1003进行检测 ,

图 1 (d)为该序列的 T值曲线 ,其 P ( Tmax3 ) < 0199 ,

故这段子序列不能继续分割.如此重复 ,我们得到两

个分割点分别在 t 等于 1003和 1485的位置 ,与原

序列的两个结构突变点的位置较接近.参考窗口宽

度的取值一般不超过原序列长度的 5 % ,故首尾两

个窗口内存在动力结构突变的可能性较小 ,在试验

中不考虑一般不会影响该方法在实际中的应用.通

过上述试验可知 ,发生结构突变点的位置一般对应

于 Q算法 T值的大值区 ,同时检测到的突变点与实

际突变点相比存在较小的偏差 ,故我们定义检测偏

差η,即

η =
t - t0

N
×100 % , (10)

其中 t0 为实际突变点 , t 为检测到的突变点 , N 为

原序列长度.

为进一步验证 Q算法的有效性 ,本文对 n取不

同数值进行试验 ,表 1给出了其中三组的试验结果

(其余试验结果与此类似) .由表 1可知 , Q算法检测

得到的突变点与实际的结构突变点之间可能存在一

定的偏差 ,即 Q算法能够检测到原序列可能在某一

区域内发生了突变.同时检测偏差随 n取值的不同

可能发生变化 ,反复试验发现 , n = 80时检测偏差最

小 ,点 1000和 1500 处的两个结构突变点的检测偏
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差分别为0115 %和 0175 % ,故应用 Q算法进行检测

时存在一个最佳窗口宽度ω , n =ω时检测效果最好

(ω可能随实际序列的变化而变化) .我们将理想时

间序列的动力学方程组 (9)式变为 (11)式 ,用 Q 算

法对新序列进行检测 ,检测结果与前者类似.上述试

验表明 Q算法具有一定的普适性.

x ( t) =

2sin (015) t + 115cos(012 t) + 011 ,　　　　( t < 1000)

( tΠ1000) 2
- tΠ1000 + 2cos(011 t) ,　　　　(1000 ≤ t < 1500)

tan (πt) + 2sin (012 t) + 2 ,　　　　　　 　(1500 ≤ t ≤2000)

(11)

表 1　不同窗口宽度的检测结果

窗度宽度 n = 60 n = 80 n = 100

检测结果

t 1023 1486 1003 1485 937 1039 1486 1570

Δt 23 14 3 15 63 39 14 70

η 1115 % 0170 % 0115 % 0175 % 3115 % 1195 % 0170 % 3150 %

41噪声和扰动对 Q算法的影响

由于存在外强迫和仪器本身的测量误差等因素

的影响 ,实际观测数据大都包含尖峰噪声、白噪声和

扰动等的信息 ,即使对序列进行预处理 ,一般情况下

很难完全滤除这些“坏数据”[25 ,26 ] ,下面就噪声对 Q

算法的影响作初步的探讨.

图 2　加尖峰噪声序列及其 Q算法检测结果　(a)叠加尖峰噪声的理想序列 , (b)加噪序列的 T值曲线

在 (9)式构造的理想时间序列中随机加入 15

个尖峰噪声 ,噪声大小在 3—8之间变化 (图 2 (a) ) .

因为尖峰噪声的数目相对原序列的长度较小 ,故不

会改变原序列的结构特点.基于 Q算法对加噪序列

进行检测 , n = 80 , l0 = 100 , P0 = 0199.由图 2 (b)可以

看出 ,检测到的两个突变区域分别为 920—1080 和

1420—1580 ,大小较不加噪声时变化不大 ,同时最后

检测到的突变点为 1002 和 1469 ,检测偏差分别为

0110 %和 1155 % ,相对于不加噪声时变化较小.由此

可见相对少量的尖峰噪声对 Q 算法的检测结果影

响较小.

在 (9)式构造的理想序列中的多个时段叠加随

机白噪声ε( t) , - 1≤ε( t) ≤1 ,且每段白噪声宽度

为 20—30不等 ,各段内噪声连续分布 ,各段的宽度
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(数据点个数)之和为 100 ,均值ε≈0 (图 3 (a) ) .随机

白噪声的总宽度为原序列长度的 5 % ,故原序列的

结构特点也不会因为加入噪声而发生质的变化.基

于 Q算法对加噪序列进行检测 , n = 80 , l0 = 100 , P0

= 0199.由图 3 (b)可以看出 ,加噪声后的 T值曲线

较不加噪声时 ,其波动反常的区域增多、增宽 ,但仔

细比较后发现结构突变点附近的 930—1070 和

1420—1580两个区域内 T值及其波动的幅度最大.

同时最后检测得到的突变点分别为 1003和 1485 ,相

应的检测偏差为 0115 %和 0175 % ,这和不加噪声时

的结果相同.显然 ,受白噪声的影响 T值曲线的变

化较大 ,多个区域出现类突变现象 ,故连续分布的随

机白噪声对 Q算法检测突变区域的影响较大 ,但就

最后检测到的结构突变点而言 ,受白噪声的影响较

小 ,可以借助最后检测到的突变点排除那些虚假的

类突变区.将上述白噪声离散为多个更小时段并叠

加到理想时间序列中 ,检测结果与加尖峰噪的情况

类似 (图略) .

图 3　加随机白噪声序列及其 Q算法检测结果　(a)叠加随机白噪声噪声的理想序列 ,其中 A ,B ,C ,D , E

五处分别叠加了宽度不等随机白噪声 , (b)加噪序列的 T值曲线

51 Q算法和传统分割算法的比较

滑动 T检验、Yamamoto法等传统分割算法大多

基于时间序列是平稳过程的思想 ,一般也只是从外

部特征 (均值和趋势等)的角度进行检测 ,在实际检

测中大都存在一定的缺陷[27 ,28 ]
. Q 算法则是建立在

对原时间序列进行相空间重构的基础上 ,从动力结

构变化的角度进行检测 ,检测得到的突变区域和突

变点的物理意义较明确 ,即对应原序列发生了动力

结构突变.可通过比较滑动 T检验和 Q算法的检测

结果 ,对 Q算法的有效性作进一步的分析.

在 (9)式构造的理想序列中叠加一全局的线性

外强迫φ( t) (图 4 (a) ) ,

φ( t) = tΠ500　　　t = 1 ,2 ,⋯,2000 (12)

分别基于滑动 T 检验、Yamamoto 法和 Q 算法对该

序列进行检测.由图 4 (b)可以看出 ,基于滑动 T检

验进行检测 ,滑动窗宽度取为 80 ,显著性水平取为

0101 ,共检测到 8 个突变点 ,分别为 5 ,24 ,26 ,527 ,

779 ,1004 ,1257和 1506 ,这些突变点虽然包括了结构

突变点 ,由于它们都是基于各段序列的不同均值得

到 ,故很难区别其物理意义 ,即很难将那些虚假的突

变点剔除而影响对序列整体性质的分析.

由图 4 (c)可以看出 ,基于 Yamamoto 法进行检

测 ,窗口宽度取 80 ,连续设置基准点.对应信噪比

(SNR) 曲线中存在的两个反常区域 ,分别近似为

920—1080和 1420—1580.其中第一个区域的反常较

明显 ,但第二个反常区域较平稳不易辨别.当显著性

水平确定为 0101 ,SNR为 0137 ,此时只有点 1003符

合突变条件 ,显著性水平降低为 0108时 ,对应信噪

比 (SNR)为 0128时 ,点 1003和 1508符合突变条件 ,

检测偏差分别为 0115 %和 0140 %.可见 ,显著性水
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平的主观确定 ,可能在一定程度上影响 Yamamoto法

的检测结果.同时 Yamamoto法本质也是基于均值的

思想进行检测 ,故对于这两个突变点 ,就其物理意义

而言 ,仅反映了原序列均值的突变 ,而未能很好地体

现其动力结构的变化.

图 4 (d)为 Q算法的检测结果 , n = 80 , l0 = 100 ,

P0 = 0199 ,可以看出 ,虽然叠加了全局外强迫 ,仍能

检测得到两个明显的突变区域 ,且较不加全局外强

迫时没有发生太大的变化 ,分别为 920—1080 和

1420—1580.而最终检测到的动力结构突变点为

1047和 1452 ,检测偏差分别为 2135 %和 2140 %.虽

然 Q算法检测得到的突变存在一定的偏差 ,但就整

体而言 ,相对于传统的突变检测方法在检测动力结

构突变方面具有一定的优越性.

图 4　加全局线性外强迫序列及其滑动 T检验、Yamamoto法和 Q算法检测结果　(a)叠加线性全局外强迫

的理想序列 , (b) , (c) , (d)分别为滑动 T检验、Yamamoto 法和 Q算法的检测结果 ( (b)中黑点为均值突变

点 ,粗线为均值曲线 ,细线为原序列)

61结论和讨论

1)本文在非线性时间序列分析方法———动力学

相关因子指数的基础上提出了一种新的检测动力结

构突变的方法———动力学指数分割算法 ,同时构造

理想时间序列验证了该方法能够有效检测序列在某

一区域内动力结构发生了变化.

2)相对少量的尖峰噪声对 Q 算法的检测结果

影响较小 ;连续分布的随机白噪声对 Q算法检测突

变区域的影响较大 ,但就最后检测得到的结构突变

点而言 ,受白噪声的影响较小.

3)比较滑动 T检验、Yamamoto法和 Q算法检测

时间序列结构突变点时 ,相对于一些传统的检测方

法而言 , Q 算法具有虚假突变点少 ,检测到的突变

区域较明显 ,物理意义较明确等特点.

Q算法本身也存在一定的缺陷 ,如只能在一定

程度上检测出发生动力结构突变的区域 ,最终检测

得到的突变点一般也存在一定的检测偏差 ,同时在

具体应用中还涉及如何选择相空间重构的最优维

数 ,如何选择最优窗口宽度等问题 ,这些问题的有效

解决将会更好地实现 Q 算法在实际资料检测中的

广泛应用.
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Abstract

For a long time in the past , researches of time series were often based on their external characters and used linear and

statistical methods. However , most actual systems are nonlinear , nonstationary and complicated , which increased the diffculties

in treating them. The research of abrupt change is one of most important research aspects of nonlinear time series , for which the

traditional method based on the external characters of data and using linear process lacks enough physical foundation , and has

obvious limitations. How to find out the essence of complicated systems from time series , in other words , to check the abrupt

change in dynamical structure of actual data series is a really important problem pending solution. In the present paper , we

present a new method———the dynamical correlation exponent segmentation algorithmfor checking dynamical abrupt change based

on the dynamical lag correlation exponent . The validity of this method is verified by constructing an ideal time series and put it

to test . It was found that a few noise spikes have little influence , but continuously distributed white noise has some influence to

this new method. Comparison with conventional t2test and Yamamoto method was made to show the relative merits of the

methods.

Keywords : dynamical lags correlation exponent , dynamical correlation exponent segmentation algorithm , noise , student’s t2
test , Yamamoto method
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