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Impact of preceding boreal winter southern hemisphere annular mode

on spring precipitation over south China and related mechanism
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Abstract The impact of the preceding boreal winter (December-February) Southern Hemisphere
Annular Mode (SAM) on spring (March-May) rainfall over South China (RSC) and related
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physical mechanism were examined statistically by methods such as correlation analysis,
composite analysis, singular value decomposition (SVD) and numerical simulation. The results
show that there is a significant negative correlation relationship between the preceding winter
SAM and spring RSC. That is, winters with strong (weak) SAM are often followed by less
(more) RSC. In order to understand the physical mechanism of this relationship between signals
from Southern Hemisphere mid-high latitudes and RSC in the following season, the role of ocean
as underlying surface was investigated. It was found by diagnostic analyzing that in winters with
strong SAM, latent heat fluxes change because of the change in sea surface wind speed, thus
leading to positive (negative) SSTA in 30°S—45°S (45°—70°S). Because of large heat capacity of
the ocean, the SSTA pattern persists to the following spring. Results from diagnostic analysis
show that these SSTA lead to a series of consequence: Northwestern Pacific subtropical high
weakens and the ridge extends less to west than normal years; an abnormal cyclonic circulation
exists over West Pacific region; South China (SC) is controlled by abnormal northeast wind and
wind divergence; water vapor transport to SC weakens, all these conditions lead to less RSC.
The circulation anomalies related with SSTA caused by weak SAM are reversed, thus leading to
more RSC. SST sensibility experiments carried out by CAM3 further certify above-mentioned
circulation anomalies caused by SSTA. Results show that SSTA related with strong SAM lead to
abnormal northeast wind, wind divergence, sinking movement over SC, thus leading to less
RSC. In short, the winter SAM can impact the following spring RSC through SSTA in middle
and high latitude in Southern Hemisphere, a manifestation of “ocean-atmosphere coupled
bridge”. The results imply that preceding winter SAM provides a significative prophase signature
for forecasting spring RSC.

Keywords Southern Hemisphere Annular Mode (SAM), Spring rainfall over south China, Sea

surface temperature anomalies (SSTA), Ocean-atmosphere coupled bridge
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Fig. 2 Standardized time series of the preceding winter SAMI and spring RI and correlation coefficient between them

(a)Standardized time series of winter SAMI and spring RI; (b) Same as (a) but for detrended series; (¢) Lead-lag correlations between

spring RI and SAMI in different months , the three dashed lines respectively indicate significant at the 90%, 95% , and 99% confidence

levels; (d) 31a sliding correlation coefficients between preceding winter SAMI and spring RI, the three dashed lines are same as (c).
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Fig. 1 Correlation coefficients between the preceding winter (DJF) SAMI and spring (MAM) precipitation over East China

(a) Correlation map before removal of ENSO; (b) Partial correlation after removal of ENSO; The contour interval is 0. 1, and the shaded
areas from light to dark respectively indicate correlation coefficients significant at 90% , 95% . and 99% confidence levels. The domain of

South China is surrounded by the red dot dashed line.
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only the wind vector that are significant at 95% confidence level are shown.



3548

H Bk ¥ B % R (Chinese J. Geophys. )

55 &

i 3 5T o 155 B0 M I A T b X0 S AR A XA 1 T K
TRAIE AR BRI SR T A RS o T2
TEBILL F25 3 40 BT B 2 R G U [ 145 2% 850 hPa
AKX 1 A 22 43 A (B 4b). i B AT L, /2 RI
8 Bl o (AR R K A 22 X 3 () 3 4 78 1 b KR
T DX S R R AR R X RS T
DR H S DL R P g 7K R B % i (T ). & da A
Ab FE PG AL AT 7 Hb X S H A LA AR e i — Btk
FLR A AH B2 U8 BT A4 SAM i 55 8 & B M
R K D 22 4 446 T A R A 3R 000 45 1 s IR Z L AT 44 SAM
i 58 hy 75 2 A B W K 0 B3 T A R A BR R A A
H R KRR K M E R F L i — 5
Hrii 2 SAM Xl 45 2 46 p s [X 7K P50 3215 00 14 ] fig
SR . a3 BT A4S B AR K2 (1000~700 hPa) B R
DX 330 11 45 100 7K 3 i 3% 3 o % DX 3 K PR 1
BB 5a) & B, e XA B A KRG 2K

60°N -
(@) g
£
45°N P 7 .
b * J :
30°N 4 R
& .
- .
.om
) . * k ; : »
15N & 2 Tyl
CRIEr: LN
i -
s S TR
150 b ‘; - : " 2 _‘ b IJ’\. 2 5
60°E 80°E 100°E 120°E 140°E —2- 160°E
& 4

60°N ——
45°N ¢
30°N A

15°N 4

15°§

PRI IX. R G 582 g 1) G B K P o (E 2 R 57
F4 i AR T G 320 5 A 5 2R P 0 B R 1 AR Y
I8 RV B0 A R T AR S 0 e A&
SAMI & ) A Z= AR Z KRS & 22 (& S5b) wf
W B4 SAMI s 32 i, 48 R X8 A7 57 3 K IR
I BTGP 22 B K 5 B A Bl » A7 1 T R K /Y
S8 A A 45 3 BRI S W R O K BLAE R
DX 3o PR S 5 R R T R S AR A S
/N5 BORY L O 5 AR B 2 (B AT IR AR B E Y 39 4.
F T P S P A /MR T AR B SR K
ABB/IME R TT 18] B A KRR WA B2 i T
F i I SRt B S 12 o N a2 I | A T S DB S
B AR R DR A 50 B AL R 3 RGN &
FARJZ KRS B 22 (B 5e) T UL, 2 4 2= 4R g e
IR 25 B ef Pz A8 i DX S K PR A KT ATE
5i% 555 A B 22 B TGRSR 96 6. X R R i T

0° +

60°E 80°E 100°E 120°E 140°E 5 160°E

Hi 4 SAMI(a) Je %278 RI(b) & MUY #7 2% 850 hPa 7KV X% & B 25 (FRLAL :m/s)

FROPO ik o B AR IR I R D BAR BE 90 %0 1Y 8 PR 5.

Fig.4 Composite differences in spring 850 hPa horizontal wind field (unit: m/s) respectively

between high and low winter SAMI (a) and between high and low spring RI (b)

Black (gray) vector indicates significant (not significant) at the 90% confidence level.
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Fig. 7 The lead-lag correlation coefficients between boreal winter (DJF) SAMI and

zonal mean zonal wind (a), zonal mean SST (b) in different months.

The shadow areas indicate correlation coefficients significant at the 95% confidence level.
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Fig. 9 Composite analysis in spring 850 hPa wind anomalies in high (a) and low (b) spring ZSSTI years (unit: m/s)
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Fig. 10 Composite analysis in the spring geopotential height (a) and Northwestern Pacific subtropical high (b)
on 850 hPa between high and low spring ZSSTI (unit: gpm)
In figure a, the dark shadow areas indicate significant at 90 % level, the light shadow indicates Tibet Plateau; in figure b,

the solid, long dash, and short dash line respectively indicates climatology, strong year composite, and weak year composite
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Fig. 14 Possible mechanism of the impact of preceding boreal winter SAM on spring rainfall over South China
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