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Abstract The quasi-geostrophic adjustment process of the circulations associated with the Southern Hemisphere Annular
Mode (SAM) is studied by employing the NCEP/NCAR reanalysis daily data. To SAM, which is a planetary scale system
with the space scale along the latitude larger than the Rossby deformation radius, the wind field inclines to change itself so
as to fit the pressure field in the process of geostrophic adjustment. The results show that the evolution of SAM lags behind
the variation of the Ferrel cell anomaly about 2/16 phases, indicating the Ferrel cell changes the geopotential height
anomalies in middle and high latitudes through its meridional transporting of the atmosphere mass. As the changing of the
geopotential height anomalies in middle and high latitudes means the temporal evolution of SAM, SAM’s transition from
positive to negative phases is demonstrated to be driven by the leading mass transportation of Ferrel cell. When the SAM
changes or the meridional geopotential height gradient in middle latitudes changes, it then destroys the geostrophic
equilibrium between the zonal wind field and the geopotential height anomaly in middle latitudes, causing the geostrophic
deviation; then the geostrophic deviation drives the meridional wind filed, changing the anomalous Ferrel cell, and forming
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a self-adjustment internal process cycle.
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Fig. 1 Temporal evolution of the zonal-averaged geopotential height anomaly (color shading), zonal wind anomaly (contours with 0.4 m/s interval), and

vertical meridional cell anomaly (vector) associated with SAM phases (0—16) in the Southern winter (May—Sep)
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associated with SAM phases (0-16) in the Southern winter (May—Sep)
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Fig. 6 Temporal evolution of the zonal-averaged horizontal divergence anomaly (color shading), geopotential height anomaly (contours with 5 gpm interval),

and vertical meridional cell anomaly (vector) associated with SAM phases (0-16) in the Southern winter (May—Sep)
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Fig. 7 Temporal evolution of the zonal-averaged geostrophic deviation force anomaly (color shading), geopotential height anomaly (contours with

5-gpm interval), and vertical meridional cell anomaly (vector) associated with SAM phases (0-16) in the Southern winter (May—Sep)
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