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Abstract This study systematically examines the impacts and mechanism of diabatic heating on
atmospheric perturbed potential energy (PPE) using statistical correlation analysis and singular
value decomposition (SVD) analysis methods. Results show that the coupled correlation features
between tropical sea surface temperature (SST) anomalies and PPE are intimately associated with
the El Nino-Southern Oscillation (ENSO) phenomenon and those between tropical SST anomalies
and extratropical PPE are characterized by the Pacific-North America ( PNA)-like pattern.
Through further examination of the coupled features between atmospheric apparent heat source
(Q)) and PPE, it is demonstrated that over the tropical region the impacts and mechanism
between them still mainly reflect ENSO variability, whereas over the extratropical region the
coupled patterns between them are manifested by the northern-hemispheric annular mode to some
extent. This indicates that the atmospheric local energy availability over the extratropics is closely
linked with the remote forcing of tropical diabatic heating and the forcing of local heat source.
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Fig.1 The first SVD of winter PPE (left) and tropical SST (right)

Panels (a) and (b) are the left and right homogeneous correlation maps, contour interval is 0. 13 (c¢) and (d) the left and right

heterogeneous correlation maps, contour interval is 0.2; (e) The extension coefficient series of the left and right fields with a 3-point

running mean. TCC: temporal correlation coefficient; PV percentage of variance.
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Fig. 2 The first SVD of winter NH extratropical PPE (left) and tropical SST (right)

In (a) and (b), the outmost latitude is at 20°N and longitudinal interval is 20°.
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Fig. 3 Correlations between Nino3 index and Py,

(a) Simultaneous correlations in Jan; (b) Simultaneous correlations in Jul; (¢) Correlations between Nino. 3 SST in Apr and P4, in Jul.
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Fig.5 Correlations between SAT and PPE in (a) Jan. (b) Apr. (¢) Jul, and (d) Oct

Shading denotes the area under the 99. 9% confidence.
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Other information is the same as Fig. 1, but with a contour interval of 0. 1.
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