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Abstract  Using a state-of-the-art, fully coupled chemistry climate model Whole Atmosphere Community Climate Model 3 (WAC-
CM3), the impact of increasing surface emissions of methane (CH,) on stratospheric water vapor and global ozone is investigated.
Relative to surface emissions of GHGs in 2000 year, a 50% increase in CH, surface emissions (corresponding to the 2050 value accord-
ing to the IPCC A1B scenario) will cause an average increase of ~0.8X 10 % in water vapor in the stratosphere. The radative heating
effect of increasing CH, on the tropopause contributes 12% to the stratospheric water vapor increases, and the chemical process ex-
plains the rest water vapor increases. It is found that the transformation of CH, into water vapor is more efficient in the southern hemi-
sphere stratosphere than in the northern hemisphere stratosphere. In the northern hemisphere: 1 mol CH,; molecule may transform into
1. 63 mol H, O molecule; in the southern hemisphere: 1 mol CH; molecule may transform into 1. 82 mol H, O molecule. The 50% in-
crease in the CH, emission would lead to an overall increase of total column ozone (TCO) by 1% — 3% at the lower-mid latitudes as
well as at the northern high latitudes, and a maximum increase of ~8% at the southern high latitudes, with a maximum growth rate of
up to ~20% over Antarctic in autumn. It is found that the significant TCO increase over Antarctic is mainly caused by a feedback of
chemical effect. However, at the northern high latitudes the TCO increase is mainly related to the impact of water vapor increases
caused by the oxidation of CH, on ozone. The study also showed that the effect of increasing methane emissions in the future on ozone
recovery is as important as the decrease in bromide emissions.
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Fig.1 Latitude-height cross sections of the change (a). percentage of change (b). change in winter (¢) .

change in spring (d), change in summer (e), and change in autumn (g) of water vapor above 100 hPa

between E2 and E1(Contours are in the interval of 0.1X 1076 for (a). The contours are in the interval of

3% for (b), (¢), (d), (e) and (f). Solid (dashed) lines represent positive (negative) anomalies)
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Fig. 3

Latitude-height cross section of the percentage of change in ozone above 200 hPa (a) and the

seasonal difference in the TCO (b) between E2 and E1

(The contours are in the interval of 2% ; solid (dashed) lines represent positive (negative) anomalies)
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Latitude-height cross section of the change in temperature above 200 hPa

(a. between E2 and E1, b. between E2 and E3;

Contours are in the interval of 0. 2 K, solid (dashed) lines represent positive (negative) anomalies)
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