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1 HadISST 1870—2017 &2 SST
Fig.1 HadISST boreal spring SST during 1870-2017
(a) PP RPEH: (30°9~30°N, 70°W ~20°E) EOF JHif Y55 — M, AR AMM JUEREY—32; (b) P b RPE T (0° ~30°N, 100°W ~20°E)
EOF - 15— 75, B0 C 5 () NTAM 4B (SST 1F 5°~25°N, 60° ~20°W MHH ) 7EAR[E £ (1975 2 (8437 .C )
(a) 2™ EOF mode over the tropical Atlantic (30°S~30°N, 70°W ~20°E) , the black box represents the northern pole of the AMM
(b) 1" EOF mode over the northern tropical Atlantic (0°~30°N, 100°W~20°E) (unit; °C); (c¢) The variance of NTAM

index (SST averaged over 5°~25°N, 60°~20°W) in calendar months (unit; °C?)
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Fig.2 Schematic diagram of NTAM triggers
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Fig.3 Schematic diagrams of NTAM impacts on global climate
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Progresses and Prospects for North Tropical Atlantic

Mode Interannual Variability

Yang Yun, Li Jianping, Xie Fei, Feng Juan, Sun Cheng

(College of Global Change and Earth System Science ,Beijing Normal University , Beijing

100875, China)

Abstract: North Tropical Atlantic Mode (NTAM) is the leading variability of the boreal spring sea surface

temperature anomalies over the North Tropical Atlantic at interannual timescale. It is also known as the northern

pole of the Atlantic Meridional Mode (AMM). NTAM shows significant impact on the shift of Intertropical Conver-

gence Zone, the precipitation of the surrounding countries, the quasi-biennial oscillation of El Nino-Southern Oscil-

lation (ENSO), and the recent global warming hiatus. Despite its distinct influence on global climate, NTAM has

not received equivalent attention as other tropical variability (e.g. ENSO). By revisiting previous studies, this pa-

per summarized the triggers and mechanisms responsible for the evolution and development of NTAM, including re-

mote forcing from ENSO, south tropical Atlantic as well as North Atlantic Oscillation (NAO) , local air-sea cou-

pling, and the interactions among different triggers. Also, this paper detailedly introduced the ability of CMIPS

(The fifth phase of the Coupled Model Intercomparison Project) model simulation. The prominent model biases over

the equatorial Atlantic significantly limit the study of NTAM. Finally, a future prospective of NTAM interannual var-

iability was presented.
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