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Fig.5 DNHT, NAO, and AMO indices
from 1900 to 2011
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The red line, blue line and green line shows the eleven year running

means of DNHT, NAO and AMO indices, respectively. The pink
shaded areas show the 2-sigma uncertainty ranges of the NHT series
for the HadCRUT4 data set estimated using the 100 realizations. The
vertical green line shows the 2-sigma uncertainty ranges of the AMO

series for the HadSST3 data set
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Left: Global linear trends for hiatus decades (red bars) and all other
decades (green bars) for TOA net radiation (positive values denote
net energy entering the system) ; Right: global ocean heat-content
decadal trends for surface to 300 m, 300 ~ 750 m and 750 m-bottom

ocean layers
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Abstract: From 1998 to 2012, the warming rate of global mean surface air temperature showed significantly
slower than before, which is referred to as the global warming hiatus. The causes and underlying mechanisms of
this phenomenon are currently a hot topic of climatic change research. The research significance of global
warming hiatus was discussed and relevant research progress was reviewed from two perspectives of external
forcings and internal variabilities. In term of external forcings, global warming hiatus is mainly affected by solar
activities, volcanic eruptions, aerosols and stratospheric water vapor. With respect to internal variabilities, the
warming rate of global mean surface air temperature slowdown is mainly related to the natural variabilities of the
Pacific Ocean, the Atlantic Ocean, the Indian Ocean and the Southern Ocean and influenced by the related heat
redistribution processes. During the global warming hiatus period, some energy is transferred and restored in the
deep ocean so as to modulate the global warming rate, rather than there is a reduction of global total energy in
the climate system. In addition, the partially coupled forcing pacemaker model experiment was also reviewed.
The pacemaker experiment is a powerful tool for studying the characteristics, causes and underlying mechanisms
of the global warming hiatus. Besides, some challenges resulted from the global warming hiatus, including the
global energy imbalance, data, simulation and related policy-making were summarized, and future research
directions were also discussed.
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