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Abstract  Atlantic Multi-decadal Oscillation (AMO) is the average sea surface temperature (SST) over the entire North
Atlantic after the long-term warming trend is removed. In the reconstruction of North Atlantic SST from the mid-1800s to
present, the basin-wide mean time series appears to oscillate with a period of 50-80 years. One of the most accepted
theories is that the AMO is primarily driven by variation in the strength of Atlantic meridional overturning circulation
(AMOC). Recently, the atmosphere-forced thermodynamics for the AMO has been proposed. There is a clear need to
figure out the causality between AMO and North Atlantic surface heat flux and it may provide a key feature to distinguish
the AMO mechanisms. We use a newly developed technique that is based on the information flow concept to investigate
the causal structure between the North Atlantic surface heat flux and the observed AMO from the mid-1800s. Our study
shows one-way causality between North Atlantic surface heat flux and AMO. It is confirmed that the AMO is the main
causal driver of the North Atlantic surface heat flux, which means ocean dynamics mainly dominates heat transport
between ocean and atmosphere. The stochastic atmosphere-forced thermodynamics mechanism cannot explain the
results. The results between the AMO and land surface air temperature further prove that the AMO dominates the North
Atlantic surface heat flux transport. We conduct a SST forced ATL_ VAR _AGCM experiment, and the results of the five
ensemble members from the experiment verified the direct impact of the Atlantic SST forcing on land surface air

temperature. The results of this study provide a new clue to distinguish the AMO mechanisms and further show that,

43 %
Vol. 43

instead of atmosphere-forced thermodynamics mechanism, ocean circulation may mainly drive the AMO.
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) R . BRIEEMARIEE LR 04°C, £
() bR A A — B R R, i A ) SR
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AMO (Atlantic Multi-decadal Oscillation), Information flow, Causality, Heat flux, Anomalies of land air
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2016) . AMO X 3& B K (1) 3 7K &A1 <A B 25
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Ao SR, A — L RERAE AMOC 58 FE 1 A
T, W 400 KAM R IR JZIREEN £ SRS 1
KL WP IBRE . g7 LR S B AR i
T, BB AMOC T AMO 2 [i]BE £ W
RIS BN [FRy, —UeFRE e s 73
L R AMOC AT AMO [ 22 4E AR B o J& 19 4
o, e, R EEAL RS 5EE 51 1 B ) Sl e
AN A 4EFr s fHJE ¥R - Sun et al. (2015)
R NAO i i g 3% KB 7 508 5 5 AMOC K A4
AT T e AMO 13 2208 FE 7 s AMO Xf
NAO 171E SR (1 G B RN, 31X B A s A Jd it
WRMGBREPZ W RSAR . BT Xy,
AT T R TR BRI S A IR R T
PSR, R T NAO Ml AMO 1) £ AR 1 A
R -

IR Clement et al. (2015) & H K 5838 4
FTIHLHPRERE AMO, $hi% 175 AMOC 5 K i
ITIBIHLE] . AT T RS AR R RIS =
BB (CMIP3) H-PHREFER L (SOM, 50 KK
RA PR D B KT 5 SST 2 R Fn AR
#, 1£SOM H R E BRSPS, AF
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2013). Zhang et al. (2016) FIHH < Hr 5 i+ #h i
5 AMO % & JF 48 th il 7 3R 3h 71 R 3h 2
AMO fJE[H . Cane etal. (2017) AN T+
I I 2% 25 T IR AN BE U W VE A IR K Bl AMO,
Mg —MNBIREEIR, MHRTEARRBE RS R K
g, A BT R AER B, FRE AMO LK
VP U 2 Al 110 R SR K R 2 AT AMO 31 77 Fl 4
LT LRI ES

BT A S Z TR R AR G &R, TR K
RS AR A0 AT, AH R AH SR C R P AN A1 4
TeEHE R R . X IESZ Cane et al. (2017) A
MR A BE BB R KRR — A EEEE
(Clement et al., 2015, 2016) . 4 N FH A4 2 M %
IR I AR A X 73 9 2 AR R AR o R SR A RTAH O
MR ZFWHIRBBH A AFME, R DR
AT —ANRRBZEAFERR K R, B4 A0AT]
B N T PR 3 A — o BT AR, SRTITANILR 2
V) £ £E AH 2 1 I AN ok A6 Al A1) 2 8] A R AR R
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2014) MREHSIE TR (1901~2007 4E), 43 3%
$)750.5°X0.5°

AT F AT . B TR,
Fr 45 B 45 B i AMO 48 205 i3 (1) AMO B 7] ¢
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CRU TS v3.23 [ ifi =il 75 k) 9 25 45 AR L, [
I FRATTHE N Sk 2 R CRU TS v3.23 1 i < i
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1 4EFHAMO CKIGFEZEPRRES) 1650 (BB) (Jfi: °C) MIRE CRU TS v3.23 (i) HINOAA Delware v4.01 (£1) i i %k
PRI P A ER RSP CLfz: °CO MIRFTEF51 (1901~2007 £F)
Fig. 1 Time series of annual mean AMO (Atlantic Multi-decadal Oscillation) index (black) (units: °C) and anomalies of annual mean global land

surface air temperature (units: °C) for the period 1901-2007 from CRU TS v3.23 (blue) and NOAA Delware v4.01 (red) surface air temperature data

sets
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KABOEA T, FKHAMO TR 5 KR A
WEATAER R MIAN . Ak, BATEKE T AMO
P85 X8 ) (30°N~60°N, 60°W~30°W) ]

PO R AT S A, 45 RER B AMO AR
A B AT AE R R (RS

K345 H T 1880 4 2 2007 42 AMO AR P £
T AGEE GRATIEE T 2 AR S e b i K e
FETX 30 59 (RS54, i B A LK P 2R 1
Pl R ROUERR B RE, I HS AMO
AT AR DA o K78 A 3R T FAvid = PR {E AR A0 T
FEN9 W m?, 71900 % 1930 45 F1 1960 4 1990 4
Z AL, 1925 4E 2 1960 4E N IEALAH, AR HT
AMO Z)5 ] 104E . AMO 5 K 4 V3 [ # & 15 1
BRI A — 8, MHXRELR0.77, 5E2

B2 1880~2007 -4 AMO F 5 RIA: - 12 ] #AGE 1 B 1 22 AR AR BRAS AL B AR S R AL CRIZEAR 70 it 0.01 B3 MR 3D

Fig. 2 Multi-decadal correlation coefficient between annual mean AMO index and annual mean surface heat flux anomalies for the period 1880—

2007 (Area with black lines indicates 0.01 significance level based on Student 7 test).

K3 1880-2007 4P AMO T4 (D (Hfii: °C) FUKVEFEE-FHRMAMBEIEF (40D (4. Wm™) I [EFF, L2 sr

HFTR 11 EENT B T A2y

Fig. 3 Time series of annual mean AMO index (blue, units: °C) and anomalies of annual mean surface heat flux (red, units: W m™) for the period

1880-2007. Thick and thin lines are 11-year running means and annual means, respectively
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AE e K32 0.2, J= 2 K 78 ¥ 3R T #4408 & i 19
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BRI T 0. H1 2.2 75 AT 0K 74 3R T AAGE B )
AMO A5 B Ui 1 £l 7T DLk 2%, Rt AMO 5
KGR HGE 8 57 20— AN EA B2 A
RKFR, FEAMEIEARNIEME, Hik % AMO
& K VE R T HGE B A e M R E R, /)
AMO & K PG ¥R TH #vil 2 7 0 AEABR AR 1 1 )5

KABEHLI S 52 EHLEA N AMO EE 2L K
PEIE SST X BENL K A BRIE M E MR, KREFT

4 1880~2007 4511 AMO i HURN K VE i A 1 1) 3R T A0l i E 715 SR I S ) 40 A . (a) AMO B KV v R i ol B E T (M AR (R
2R 4y ol 0.05 W PEACEARLR s (b) KPR [ Al & 25 P 31 AMO 1 R IR

Fig. 4 Spatial patterns of (a) the information flow from the annual mean AMO index to anomalies of annual mean surface heat flux for the period
1880-2007 (area with black lines indicate 0.05 significance level based on z test) and (b) the information flow from anomalies of surface heat flux to

the AMO index for the period 1880-2007
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1) & SR AT LK 78 3 2 T Al & PR T 2 AMO 1S 2
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Fig. 5 Multi-decadal correlation coefficient between annual mean AMO index and anomalies of annual mean land surface air temperature for the

period 1901-2007 (area with black lines indicate 0.01 significance level based on Student ¢ test).



5 31 ERAKEE: FETE BURENE B R M AT RV 2 R AR PR IR S ) B LA v A S
No. 5 GONG Zhangiu et al. The Application of Causality Analysis Based on the Theory of Information Flow in ... 1089

AR 1 2 FRERE S AMO PR EF, &
Hby DX G 3T KRB IX UK S M OC R AL T 1, K
PO 2R AL X QB AR O RACE SR T 6., 5
AMO F5 HURN R T #5578 2 AR bR A8 A IR A %
FERT R o 33 B AMO 8 £5UFH K 78 7 78 38 A G50 3 X
i b U S 2 AR AR PR AR A B AR DG, 17 P R
Hiy DX KRR A AE S K X R 2, 3 HL A A
TUKEy . A& PR By S

N G T B b SR S 2 SRR PR AR LI
FRAE, FRATEREE S th 5 AMO $8 B0k 5t 8.3 1)
i DX LR SR TR) A1 ] . ACEEL 6 25 AT 1901
£2007 4 AMO FEEURIIL 3 . A =2 B FIUK B (1 4
ST 34 i b AL EE P R ) 3 20 mT DU, i SR
PR 1 2 AR bR AR AL 35 5 AMO A BT 1 AH 5%
P, X REHH0.72, 0.71F10.84, VKX
IR S f s, G SRR 2 =2 By IS AR — 48, Sk
FHR RE S, VIR BTG, J63E. #%
% 22 S5 RN UK 5 PR 6 T 28 o AR RSP 4R LA 2 4EAR
PRAZALIIREAE, BT LUE H A b B b <R EE T 1 2
FENARE A S AMO ML, ERMHA E, db
F. MR UKE PR ASIR TR S AMO FR 2L
7E 1960 SFF11 1990 4 A7 (AL AH B2 41 B[R] AH 224578 o
AR FEE A LA RS 55 R 7 T 2 IR it X o e = e 1)

5 AMO FREUHEL, Mtk e = 5. UKE ISR
SEFE R EROR, KEFACELE0.7°CLEL,
M B2 22 B AR EE WA B 1°C i th . Bk b, 2
AR R b, KV o) 3 ot < 7 o R 5
AMO B F AR . te4h, FATIEK A T AMO
FEHCS XIS (30°N~T70°N, 90°W~10°W) [
K P S 3 I O e i B TV S A G, A SRR
B AMO 1) 7% A4, A R IR P8 A R 22 i e =it e 5 1
FFE CEIIS)

AMO 572 K VG VL IX 1) ~F- S5 i i =il e o 1
Z AR ARBR AR A AE 73 (R AN IS 18] RS #5625 B (R AH
KKFR, FERAIFERICH. =2 5 E K
Ky, SHEEMAMO MK H—E. AMOS5
T2 RV b DX (1)~ 359 o e S 1) 2 AR AR PR AR AL
ZIAIHIA R R BRI TR 2, AMO 5l [X |
Wit B3 PHAE LA SO PH it b A<l e 1) 2 4
X by A5 4k # A 1R 45 79 #H 9% (Knight et al., 2006;
Chylek et al., 2009; Sutton and Dong; 2012; 58 2%,
2015; O’Reilly et al., 2017) . FATHILE R 5 Z A7 1)
WAL B —E, (HIREEF A I RA i — 20
A e R SR T ERT SR DG &R, 1T 9 DR SR R &R 1
AT AT DA B FRAT T — P B R KR VR 2 F AR R
-2 bl Sy N W ST <= Ve 31 K 7/ BEED wy O P N T

El6  1901~2007 FEAEF1) AMO FRELANIL S . A B 22 B UK ) IR AR~ 2 By M SCHR BB~ TR )P 31 Bz °C)

Fig. 6 Time series of annual mean AMO index and anomalies of annual mean land surface air temperature in northern America, Greenland, and

Iceland (units: °C) for the period 1901-2007
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Fig. 7 The spatial patterns of (a) the information flow from the annual mean AMO index to anomalies of annual mean land surface air temperature

for the period 1901-2007 area with black lines indicate 0.05 significance level based on z test) and (b) the information flow from anomalies of land

surface air temperature to the AMO index for the period 1901-2007
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Fig. 8 Spatial pattern of the information flow from anomalies of annual mean surface heat flux to anomalies of annual mean land surface air

temperature for the period 1901-2007
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Fig. 9 Regression coefficient between annual mean AMO index and anomalies of annual mean land surface air temperature under the simulation of

the model which changes SSTs of the North Atlantic only for the period 1901-2007 (area with black lines indicate 0.01 significance level based on

Student ¢ test)
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