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Abstract  Atmospheric energetics is an important part of atmospheric science. Understanding the spatiotemporal
characteristics of atmospheric energy can provide new ideas and methods for atmospheric research, especially research
on climate change. This work explains the comprehensive features of global atmospheric energy changes on the basis of

the distribution, trends and dominant mode changes shown by total energy, internal energy, potential energy, latent heat
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energy, and kinetic energy as inferred from NCEP monthly reanalysis data for 1948 to 2016. The main conclusions are as
follows: (1) The total energy decreases from the equator to the poles and from high-altitude areas, and energy in most
parts of the world increases. The distribution and variation of internal energy and potential energy are closely related to
the total energy. The maximum area and significant change zones of latent heat energy are located in the equator and low
latitudes. The maximum area of kinetic energy is located in the long-wave trough of the middle latitudes and the outlet
zone of westerly jets. In addition, kinetic energy located in double westerly jets in the southern hemisphere presents the
most pronounced variations. (2) The total energy shows discontinuous periodic leap growth. The total energy of the
Northern Hemisphere is more than that of the Southern Hemisphere. The speed-up of the Northern Hemisphere, however,
is slower than that of the Southern Hemisphere. That is, the energy between the Northern Hemisphere and Southern
Hemisphere tends to be homoplastic. The total energy above the ocean is more than that above land, and the gap between
the total energy above the ocean and that above land has widened. Volcanic eruptions may have an important effect on the
interannual reduction in atmospheric energy. (3) The spatial characteristics and distribution trends of the first leading
mode of each component of atmospheric energy coincide, and they underwent a decadal catastrophe approximately in
1975. As a whole, the second leading modes of the total energy, internal energy, and potential energy of the atmosphere
reflect that the changes in the north and south poles oppose those in other regions. The trend exhibited by the change in
latent heat energy in some lower-latitude areas contradicts that exhibited by the change in the rest of the world. Kinetic
energy mainly shows a meridional wave train distribution from the tropical Pacific to the north and south poles. The time

series of the second leading mode possesses the characteristics of multidecadal variations that may be related to the

internal variability of the climate system.
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Fig. 1 Global distribution of (a) the annually vertical-mean total atmospheric energy (units: 107J m?) and (b) its long-term trend [units: 10*J m™ (10

a)™'] for the period of 1948-2016. The stippled area indicates significance at the 0.05 level
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Fig. 2 Global distribution of each component of the annually vertical-mean atmospheric energy for the period of 1948-2016: (a) Internal energy, (b)

potential energy, (c) latent heat energy, and (d) kinetic energy. Units: 10”J m™
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Fig. 3 Global distribution of each component of the long-term trend of the annually vertical-mean atmospheric energy for the period of 1948-2016:

(a) Internal energy, (b) potential energy, (c) latent heat energy, and (d) kinetic energy. Units: 10*J m™ (10 a)™". The stippled area indicates significance

at the 0.05 level
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Fig. 4 (a) Time series (red) and (b) detrended and normalized time series of the annually vertical-mean global average total atmospheric energy
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Fig. 7 (a) Spatial distribution of the first leading EOF mode (EOF1) of annually vertical-mean total atmospheric energy for the period of 1948 -
2016. (b) PC1 time series (red and blue bars, left vertical axis) corresponding to the EOF1 and time series of global mean surface air temperature

(SAT) anomalies (black fold line, right vertical axis).
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