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Abstract The slow feature analysis (SFA) can extract slowly varying external forcing information from non-stationary
time series. In recent years, the SFA method has been applied to the climate change field to explore the potential driving
forces of climate change and related dynamic mechanisms. This study extracts the slowly varying external forcing

information of the global land surface air temperature (LSAT) based on the SFA method. It investigates the spatial
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structure characteristics of the global LSAT slow varying driving force and the main driving factors of low-frequency
variability. The LSAT slowly varying driving force extracted by the SFA method has a significant correlation with global
radiative forcing (GRF) and the main modes of the global sea surface temperature (SST) (i.e., Atlantic Multidecadal
Oscillation, tropical Pacific El Nifio-Southern Oscillation variability, and Interdecadal Pacific Oscillation), indicating that
the LSAT variability in most parts of the world is significantly affected by GRF and the three SST modes. The influence
of GRF on the LSAT variability has global consistency, while that of the three SST modes on the LSAT variability has
obvious regional characteristics. In addition, the interpretation variance of the LSAT variability of the GRF and SST
modes significantly improved because the SFA method can effectively reduce the explanatory random noise in the
original LSAT sequence, further showing that the GRF and SST modes are the main driving factors of the global LSAT
low-frequency variability. Finally, the results of the historical sea surface temperature-driven Atmospheric General

Circulation Model test, which is also known as the Atmospheric Model Intercomparison Project (AMIP)test, verify the

significant influence of the three SST modes on the regional LSAT variability.
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Fig. 1 Correlation of (a) the original observed LSAT(Land Surface Air Temperature) and (b) the LSAT slow driving force extracted by the SFA(Slow
Feature Analysis) method with the annual GRF(Global Radiation Forcing ) for 1901-2009. In the blue boxes, the regions with significantly increased
correlation coefficients are Central Eurasia (30°-60°N, 30°-60°E) and North Africa (0°-30°N, 0°-30°E). Regions above 95% confidence level are
black spotted
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Fig. 2 Normalized time series of the regional mean annual LSAT in (a) Central Eurasia (30°-60°N, 30°-60°E) and (b) North Africa (0°-30°N,
0°-30°E) and annual GRF for 1901-2009. The red lines represent the annual GRF. The gray line represents the original observed LSAT. The black line

represents the LSAT slow driving force extracted by the SFA method
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Fig. 3 Asin Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the
monthly AMO (Atlantic Multidecadal Oscillation) index. The blue boxes represent East Asia (17°-37°N, 90°-110°E), eastern North America

(43°-63°N, 49°-69°W), and Greenland (58°-78°N, 37°-57°W)
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Fig. 4 As in Fig. 2, but for the regional mean monthly LSAT in East Asia (17°-37°N, 90°-110°E), eastern North America (43°-63°N, 49°-69°W),
and Greenland (58°-78°N, 37°-57°W) and the monthly AMO index (AMOI) . The red lines represent the monthly AMOI. The gray line represents
the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
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Fig. 5 Asin Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the
monthly Nifio3.4 index. The boxes represent southern North America (18°-38°N, 88°-108°W), India (15°-20°N, 70°-80°E), and the Indo-China

Peninsula (7°-27°N, 91°-111°E)
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(a) Southern North America
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Fig. 6 As in Fig. 2, but for the regional mean monthly LSAT in southern North America (18°-38°N, 88°-108°W), India (15°-20°N, 70°-80°E), and
Indo-China Peninsula (7°-27°N, 91°~111°E) and the monthly Nifio3.4 index (NI). The red lines run through the 12-month moving average The gray
line represents the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
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Fig. 7 Asin Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the
monthly PDO index. The boxes represent northwestern North America (50°-70°N, 100°-160°W), central South America (10°-30°S, 55°-65°W),
Australia (20°-30°S, 140°-150°E), and southern North America (25°-35°N, 100°-105°W)
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Fig. 8 As in Fig. 2, but for the regional mean monthly LSAT in (a) northwestern North America (50°-70°N, 100—-160°W), (b) central South America
(10°-30°S, 55°-65°W), (c) Australia (20°-30°S, 140°-150°E), and southern North America (25°-35°N, 100°-105°W) and the monthly PDO index

(PDOI)The red lines represent the monthly PDOI. The gray line represents the original observed LSAT. The black line represents the LSAT slow

driving force extracted by the SFA method
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®4 FEF1, BAHZEA PDO EH
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Fig. 9 Correlation of the ten sets averaging LSAT simulated by the AMIP experience with the monthly AMO index for the same period

from1901-2009. The boxes represent the key areas selected according to the observation results, regions above 95% confidence level are black spotted
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Fig. 10 As in Fig. 9, but for correlation of the ten sets averaging LSAT simulated by the AMIP experience with the monthly Nifio3.4 index for the

same period from 1901~2009
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Fig. 11 Asin Fig. 9, but for correlation of the ten sets averaging LSAT simulated by the AMIP experience with the monthly PDO index for the same

period from 1901~2009
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