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This paper examines truncation and round-off errors in the numerical solution of the 1D advection equation with 

the Lax–Friedrichs scheme, and accumulation of the errors as they are propagated to high temporal layers. The 

authors obtain a new theoretical approximation formula for the upper bound of the total error of the numerical 

solution, as well as theoretical formulae for the optimal grid size and time step. The reliability of the obtained 

formulae is demonstrated with numerical experimental examples. Next, the ratio of the optimal time steps under 

two different machine precisions is found to satisfy a universal relation that depends only on the machine preci- 

sion involved. Finally, theoretical verification suggests that this problem satisfies the computational uncertainty 

principle when the grid ratio is fixed, demonstrating the inevitable existence of an optimal time step size under 

a finite machine precision. 
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. Introduction 

In April 2022, the State Department promulgated the Outline of

igh-Quality Meteorological Development (2022–2035), which pro-

osed the establishment of an accurate weather forecasting system fea-

uring five "ones": early warning of strong local weather one hour in

dvance; forecasting of hourly weather one day in advance; forecasting

f disastrous weather one week in advance; forecasting of major weather

rocesses one month in advance; and forecasting of global climate

nomalies one year in advance. This proposal signifies China’s need for

umerical forecasting systems with high spatiotemporal resolution. The

etermination of temporal and spatial resolutions is an extremely im-

ortant and critical component of studies on numerical weather and

limate forecasting technologies. Although the use of a high-resolution

odel can improve the forecasting performance ( van Roosmalen et al.,

010 ; Zhang et al., 2010 ; Kendon et al., 2012 ), applying such a model

perationally is usually costly due to the high computational require-
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ents, electrical power demand, data storage, etc. More importantly,

tudies have shown that not all simulations of high-resolution versions

f all models are superior to those of low-resolution versions ( Deng et al.,

012 ; Bacmeister et al., 2014 ; Falasca and Curci, 2018 ; Maurya et al.,

018 ; Shi et al., 2021 ). Yu et al. (2018) compared the effects of different

esolutions of the mesoscale version of the global/regional assimilation

nd prediction system (GRAPES-MESO) model on summer precipitation

orecasting in China. It was found that the refined spatial resolution

imulation failed to significantly improve the precipitation location fore-

ast, despite a better improvement in the precipitation maximum fore-

ast. Liu et al. (2015) studied the effect of the spatiotemporal resolution

f this model on the prediction skill and found that it is not in direct

roportion to the spatial resolution. The question arises, therefore, as to

hether there might be a way to determine the model resolution rea-

onably, efficiently, and inexpensively. One of the most fundamental

nd important steps in solving this problem is to select the optimal spa-

iotemporal resolution, i.e., grid size (spatial resolution) and time step
Ai Communications Co. Ltd. This is an open access article under the CC 

https://doi.org/10.1016/j.aosl.2023.100331
http://www.ScienceDirect.com
http://www.keaipublishing.com/en/journals/atmospheric-and-oceanic-science-letters/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aosl.2023.100331&domain=pdf
mailto:ljp@ouc.edu.cn
https://doi.org/10.1016/j.aosl.2023.100331
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Cao, J. Li and Y. Li Atmospheric and Oceanic Science Letters 16 (2023) 100331 

(  

e

 

f  

p

a  

o  

a  

e  

c  

t  

m  

(  

t  

h  

(  

u  

e  

d  

t  

c  

d  

V  

b  

r  

C  

a  

t

 

e  

s  

L  

o  

l  

v  

s  

t  

s

2

 

i

⎧⎪⎨⎪⎩
w  

a  

{  

t  

g  

t  

𝑥  

l  

d  

i  

s  

T⎧⎪⎪⎪⎨⎪⎪⎪⎩

 

t  

p  

(  

i  

y  

t  

E  

o  

i  

s  

c  

f  

r  

d  

t

‖
o  

𝐻

3

3

e  

f

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 

p  

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 

(  

l  

𝑫

𝑸

a

‖
 

g  

s  

i  
temporal resolution), in the numerical calculation of the partial differ-

ntial equations (PDEs) to obtain the optimal numerical solution. 

In previous theoretical studies on the optimal grid size and time step

or the numerical solution of PDEs, truncation error was often the princi-

al consideration, while round-off error received less attention ( Faragó

nd Horváth, 1999 ; Guo, 2021 ). However, an originally small round-

ff error may greatly affect the accuracy of the numerical solution after

 long numerical calculation time. For numerical solutions of nonlin-

ar ordinary differential equations (ODEs), Li et al. (2000) proposed the

omputational uncertainty principle (CUP) based on an argument that

he presence of round-off errors may bring about uncertainties in nu-

erical computation, and then the existence of the optimal time step

 Li et al., 2001 ) and effective time step interval ( Cao et al., 2017 ) was

heoretically demonstrated. Such uncertainty in numerical computation

as also been brought to light in numerical solutions of PDEs. Wang et al.

2007 ) and Wang and Zhang (2008) studied the effect of computational

ncertainty on the climate simulations of atmospheric circulation mod-

ls and found that round-off errors were an important source of ran-

om error in the models. For GRAPES-MESO, Liu et al. (2015) verified

he applicability of the theory of an optimal time step in the CUP for

omplex PDEs through numerical experiments. In a study on the heat

iffusion equation for deep soil in a land surface model, Harvey and

erseghy (2016) reached a conclusion consistent with the CUP; that is,

ecause of the effect of round-off errors, the model accuracy deterio-

ated when using smaller time steps. Li and Wang (2008) stated that the

UP is necessarily satisfied in numerical solutions of nonlinear systems,

nd studying round-off errors and the optimal grid size and time step in

he numerical solutions of PDEs is an important issue. 

As mentioned above, the CUP has been demonstrated by numerical

xperiments in the numerical solutions of PDEs, but relevant theoretical

tudies are still rare. This issue is studied in the present paper with the

ax–Friedrichs scheme of 1D advection equations. A theoretical analysis

f round-off errors and their propagation laws during the numerical so-

ution is conducted, and the CUP is subjected to preliminary theoretical

erification in the PDEs. Then, theoretical formulae for the optimal grid

ize and time step are presented, providing theoretical support for fur-

her identification of the optimal resolutions in more complex numerical

chemes and atmospheric numerical models. 

. Problem description 

The initial boundary value problem of the 1D advection equation is

nvestigated: 

 

 

 

 

 

𝑢 𝑡 + 𝑎𝑢 𝑥 = 𝑓 ( 𝑥, 𝑡 ) , 𝑎 > 0 , 0 < 𝑥 < 𝑙, 𝑡 > 0 , 

𝑢 ( 0 , 𝑡 ) = 𝜔 1 ( 𝑡 ) , 𝑡 > 0 , 

𝑢 ( 𝑥, 0 ) = 𝜑 ( 𝑥 ) , 0 ≤ 𝑥 ≤ 𝑙, 

(1) 

here a is parameter of the advection equation, 𝜔 1 and 𝜑 are bound-

ry and initial values, respectively. The solution area is defined as

 ( 𝑥, 𝑡 ) | 𝑥 ∈ [ 0 , 𝑙] , 𝑡 ∈[0 , 𝜌] } , where l and 𝜌 are the upper bounds of x and
, respectively. We divided the solution area into a 𝐽 ×𝑁 rectangular

rid. The grid size is ℎ and the time step is 𝜏, while 𝜆 = 

𝜏

ℎ 
denotes

he time–space grid ratio. Each grid node is expressed as ( 𝑥 𝑗 , 𝑡 𝑛 ) , where
 𝑗 = 𝑗ℎ, 𝑗 = 0 , 1 , ⋯ , 𝐽 and 𝑡 𝑛 = 𝑛𝜏, 𝑛 = 0 , 1 , ⋯ , 𝑁 , and the exact so-

ution to Eq. (1) at node ( 𝑥 𝑗 , 𝑡 𝑛 ) is prescribed as 𝑢 ( 𝑥 𝑗 , 𝑡 𝑛 ) . The equation is
iscretized using the Lax–Friedrichs scheme, while the upwind scheme

s used at the right-end boundary. We denote 𝑢 𝑗,𝑛 as the approximate

olution of Eq. (1) after discretization, and 𝑓 𝑗,𝑛 as the value of 𝑓 ( 𝑥 𝑗 , 𝑡 𝑛 ) .
he computational scheme is as follows: 

 

 

 

 

 

 

 

 

 

𝑢 𝑗,𝑛 = 

1 
2 ( 1 + 𝑎𝜆) 𝑢 𝑗 − 1 ,𝑛 −1 + 

1 
2 ( 1 − 𝑎𝜆) 𝑢 𝑗 + 1,𝑛 − 1 + 𝜏𝑓 𝑗,𝑛 − 1 , 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 , 

𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢 𝐽 , 𝑛 = ( 1 − 𝑎𝜆) 𝑢 𝐽 ,𝑛 −1 + 𝑎𝜆𝑢 𝐽−1 ,𝑛 −1 + 𝜏𝑓 𝐽 ,𝑛 −1 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢 0 ,𝑛 = 𝜔 1 ,𝑛 = 𝜔 1 
(
𝑡 𝑛 
)
, 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢 𝑗, 0 = 𝜑 𝑗 = 𝜑 
(
𝑥 𝑗 
)
, 𝑗 = 0 , 1 , ⋯ , 𝐽 . 

(2) 
2 
The left-end boundary condition is assumed to be accurate. The

runcation error generated from the discretization in Eq. (2) is ex-

ressed as 𝑇 𝑗,𝑛 = 𝑢 𝑗,𝑛 − 𝑢 ( 𝑥 𝑗 , 𝑡 𝑛 ) , the vector is assumed to be 𝑻 𝑛 =
 𝑇 1 ,𝑛 , 𝑇 2 ,𝑛 , ⋯ , 𝑇 𝐽 ,𝑛 ) T , and the truncation error at the n th temporal layer
s measured as ‖𝑻̄ 𝑛 ‖∞. We use the widely used maximum principle anal-

sis ( William, 1977 ) to estimate ‖𝑻̄ 𝑁 ‖∞, denoted as ‖𝑇 ( ℎ, 𝜏) ‖∞, i.e., the
runcation error at the top temporal layer. The numerical calculation of

q. (2) by a computer will also produce round-off errors; the new round-

ff error generated at the n th temporal layer is denoted as 𝑅 𝑗,𝑛 , and it

s assumed that 𝑹̄ 𝑛 = ( 𝑅 1 ,𝑛 , 𝑅 2 ,𝑛 , ⋯ , 𝑅 𝐽 ,𝑛 ) T where ‖𝑹̄ 𝑛 ‖∞ is used to mea-

ure the newly generated round-off error at the n th temporal layer. We

alculate the sum of the newly generated round-off errors propagated

rom each temporal layer to the top layer, namely 
∑𝑁 

𝑛 =0 ‖𝑹̄ 𝑛 ‖∞ as the

ound-off errors at the top temporal layer prescribed as ‖𝑅 ( ℎ, 𝜏) ‖∞. By
enoting the sum of the truncation error and round-off error of the top

emporal layer as ‖𝐸( ℎ, 𝜏) ‖∞, we obtain 
𝐸 ( ℎ, 𝜏) ‖∞ = ‖𝑇 ( ℎ, 𝜏) ‖∞ + ‖𝑅 ( ℎ, 𝜏) ‖∞. (3) 

This paper will theoretically estimate the upper bound sup ‖𝐸( ℎ, 𝜏) ‖∞
f ‖𝐸( ℎ, 𝜏) ‖∞ and present a method for determining the optimal grid size

and optimal time step 𝛤 . 

. Theoretical analysis of the total error 

.1. Propagation of round-off error 

It is assumed that only the initial temporal layer produces round-off

rrors while no other layers produce such errors; the numerical solution

or this special case is denoted by 𝑢̇ 𝑗,𝑛 , which should satisfy 

 

 

 

 

 

 

 

 

 

𝑢̇ 𝑗,𝑛 = 

1 
2 ( 1 + 𝑎𝜆) ̇𝑢 𝑗−1 ,𝑛 −1 + 

1 
2 ( 1 − 𝑎𝜆) ̇𝑢 𝑗+1 ,𝑛 −1 + 𝜏𝑓 𝑗,𝑛 −1 , 𝑗 = 1 , 2 , ⋯ , 

𝐽 − 1 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢̇ 𝐽 ,𝑛 = ( 1 − 𝑎𝜆) ̇𝑢 𝐽 ,𝑛 −1 + 𝑎𝜆𝑢̇ 𝐽−1 ,𝑛 −1 + 𝜏𝑓 𝐽 ,𝑛 −1 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢̇ 0 ,𝑛 = 𝜔 1 ,𝑛 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑢̇ 𝑗, 0 = 𝜑 𝑗 + 𝑅 𝑗, 0 , 𝑗 = 0 , 1 , ⋯ , 𝐽 . 

(4) 

The error propagated from the initial temporal layer to the n th tem-

oral layer in this particular case is denoted by 𝑑 𝑗,𝑛 = 𝑢̇ 𝑗,𝑛 − 𝑢 𝑗,𝑛 . From

qs. (2) and (4) , 𝑑 𝑗,𝑛 should satisfy 

 

 

 

 

 

 

 

 

 

𝑑 𝑗,𝑛 = 

1 
2 ( 1 + 𝑎𝜆) 𝑑 𝑗−1 ,𝑛 −1 + 

1 
2 ( 1 − 𝑎𝜆) 𝑑 𝑗+1 ,𝑛 −1 , 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 , 

𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑑 𝐽 ,𝑛 = ( 1 − 𝑎𝜆) 𝑑 𝐽 ,𝑛 −1 + 𝑎𝜆𝑑 𝐽−1 ,𝑛 −1 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑑 0 ,𝑛 = 0 , 𝑛 = 1 , 2 , ⋯ , 𝑁, 

𝑑 𝑗, 0 = 𝑅 𝑗, 0 , 𝑗 = 0 , 1 , ⋯ , 𝐽 . 

(5) 

Vector 𝑫̄ 𝑛 = ( 𝑑 1 ,𝑛 , 𝑑 2 ,𝑛 , ⋯ , 𝑑 𝐽 ,𝑛 ) T is defined, and the matrix method
 Mitchell and Griffiths, 1980 ) is used below to analyze the propagation

aw of the error ‖𝑫 𝑛 ‖∞ during the numerical solution. Eq. (5) leads to

 𝑛 = 𝑸 𝑫 𝑛 −1 = 𝑸 

𝑛 𝑫 0 = 𝑸 

𝑛 𝑹 0 , where 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 
2 ( 1 − 𝑎𝜆) 0 

1 
2 ( 1 + 𝑎𝜆) 0 1 

2 ( 1 − 𝑎𝜆) 
⋱ ⋱ ⋱ 

1 
2 ( 1 + 𝑎𝜆) 0 1 

2 ( 1 − 𝑎𝜆) 
𝑎𝜆 1 − 𝑎𝜆

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

nd thus we have 

𝐃 𝑛 ‖∞ ≤ ‖𝑸 ‖𝑛 ∞‖𝐑 0 ‖∞ . (6) 

Next, the stability of Eq. (4) (and that of Eq. (2) ) is analyzed. Re-

ardless of whether the initial value problem corresponding to Eq. (1) is

olved by the Lax–Friedrichs scheme or the upwind scheme, the stabil-

ty condition is 𝑎𝜆 ≤ 1 , which is the prerequisite for stability in solving
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he initial boundary value problem Eq. (1) ( Thomas, 1995 ). Further-

ore, the condition for the satisfaction of ‖𝑸 ‖∞ ≤ 1 is also 𝑎𝜆 ≤ 1 . In
ummary, the condition for the stability of numerical Eq. (2) is 𝑎𝜆 ≤ 1 . 
From Eq. (6) , when Eq. (2) is stable, the round-off error propagated

rom the initial temporal layer to the N th top temporal layer satisfies

𝑫̄ 𝑁 ‖∞ ≤ ‖𝑹̄ 0 ‖∞. Generally, if the round-off error is only produced as
 𝑗,𝑛 at the n th ( ≤ 𝑁) temporal layer, the error propagated to the N th

emporal layer satisfies the following when the equation is stable: 

𝑫 𝑁 ‖∞ ≤ ‖𝑹 𝑛 ‖∞. (7) 

.2. Round-off error analysis 

We denote the machine-computed value of 𝑢 𝑗,𝑛 as ( 𝑢 𝑗,𝑛 ) ∗ . The
ound-off error 𝑅 𝑗, 0 = 𝜑 ∗ 

𝑗 
− 𝜑 𝑗 at the initial temporal layer satisfies

 Kincaid and Cheney, 2002 ) 

𝑅 𝑗, 0 | ≤ 𝑐 𝑟 0 ,𝑗, 0 𝜇 and 𝑐 𝑟 0 ,𝑗, 0 = |𝜑 𝑗 | ( 𝑗 = 0 , 1 , ⋯ , 𝐽 ) , (8) 

here r 0 is a symbol as round-off error at initial temporal layer, 𝜇 =
 

− 𝑞 is the machine unit round-off error, and q is the number of binary

ignificant digits. 

For the n th ( > 0) temporal layer, when 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 , Eq. (2) is
mplemented using a computer to yield the following equation: 

𝑢 𝑗,𝑛 
)∗ = 

{ 

𝑎𝜏

(
𝑢 𝑗−1 ,𝑛 −1 

)∗ − 

(
𝑢 𝑗+1 ,𝑛 −1 

)∗ 
2 ℎ 

+ 

1 
2 

[(
𝑢 𝑗−1 ,𝑛 −1 

)∗ + 

(
𝑢 𝑗+1 ,𝑛 −1 

)∗ ]
+ 𝜏

(
𝑓 𝑗,𝑛 −1 

)∗ } ∗ 
. (9) 

The round-off error of Eq. (9) is 

𝑢 𝑗,𝑛 
)∗ − 𝑢 𝑗,𝑛 = 𝜋1 ,𝑗,𝑛 + 𝜋2 ,𝑗,𝑛 + 𝜋3 ,𝑗,𝑛 + 𝜋4 ,𝑗,𝑛 ( 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 ) , (10) 

here 𝜋1 ,𝑗,𝑛 is the round-off error resulting from the first-order numeri-

al differential calculation of the variable x , 𝜋2 ,𝑗,𝑛 represents the round-

ff error computed with numerical solution 
( 𝑢 𝑗−1 ,𝑛 −1 + 𝑢 𝑗+1 ,𝑛 −1 ) 

2 at the imme-

iately lower temporal layer, 𝜋3 ,𝑗,𝑛 denotes the round-off error of term

 𝑗,𝑛 −1 , and 𝜋4 ,𝑗,𝑛 represents the round-off error produced by the addition

peration in Eq. (9) . Their forms are 

1 ,𝑗,𝑛 = 𝑎𝜏

(
𝑢 𝑗−1 ,𝑛 −1 

)∗ − 

(
𝑢 𝑗+1 ,𝑛 −1 

)∗ 
2 ℎ 

− 𝑎𝜏
𝑢 𝑗−1 ,𝑛 −1 − 𝑢 𝑗+1 ,𝑛 −1 

2 ℎ 
, 

2 ,𝑗,𝑛 = 

1 
2 

[(
𝑢 𝑗−1 ,𝑛 −1 

)∗ + 

(
𝑢 𝑗+1 ,𝑛 −1 

)∗ ] − 

1 
2 
(
𝑢 𝑗−1 ,𝑛 −1 + 𝑢 𝑗+1 ,𝑛 −1 

)
, 

3 ,𝑗,𝑛 = 𝜏
(
𝑓 𝑗,𝑛 −1 

)∗ − 𝜏𝑓 𝑗,𝑛 −1 , 

4 ,𝑗,𝑛 = 

[ 
𝑎𝜏

(
𝑢 𝑗−1 ,𝑛 −1 

)∗ − (𝑢 𝑗+1 ,𝑛 −1 )∗ 
2 ℎ 

+ 1 
2 

[(
𝑢 𝑗−1 ,𝑛 −1 

)∗ + (𝑢 𝑗+1 ,𝑛 −1 )∗ ]

+ 𝜏
(
𝑓 𝑗,𝑛 −1 

)∗ ] ∗ − [ 𝑎𝜏 (𝑢 𝑗−1 ,𝑛 −1 )∗ − (𝑢 𝑗+1 ,𝑛 −1 )∗ 
2 ℎ 

+ 1 
2 

[(
𝑢 𝑗−1 ,𝑛 −1 

)∗ + (𝑢 𝑗+1 ,𝑛 −1 )∗ ]

+ 𝜏
(
𝑓 𝑗,𝑛 −1 

)∗ ] 
. 

There are four round-off errors in ( 𝑢 𝑗,𝑛 ) ∗ − 𝑢 𝑗,𝑛 in Eq. (10) , but they

re not all new errors generated at the n th layer, where 

1 ,𝑗,𝑛 + 𝜋2 ,𝑗,𝑛 = 

1 
2 
( 1 + 𝑎𝜆) 

[(
𝑢 𝑗−1 ,𝑛 −1 

)∗ − 𝑢 𝑗−1 ,𝑛 −1 

]
+ 

1 
2 
( 1 − 𝑎𝜆) [(

𝑢 𝑗+1 ,𝑛 −1 
)∗ − 𝑢 𝑗+1 ,𝑛 −1 

]
( 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 ) , 

erfectly fits the form of error propagation in Eq. (5) when 𝑗 =
 , 2 , ⋯ , 𝐽 − 1 , which implies that two such errors are propagated from
he lower temporal layers. 𝜋3 ,𝑗,𝑛 and 𝜋4 ,𝑗,𝑛 are round-off errors newly

enerated by the computation at the n th layer, so 

𝑅 𝑗,𝑛 
||| ≤ 

|||𝜋3 ,𝑗,𝑛 ||| + 

|||𝜋4 ,𝑗,𝑛 |||, 

3 
here ( Kincaid and Cheney, 2002 ) 

𝜋3 ,𝑗,𝑛 
||| ≤ 𝜏

|||𝑓 𝑗,𝑛 −1 |||𝜇, 
𝜋4 ,𝑗,𝑛 

||| ≤ 

( 

𝑎 
|||| 𝑢 𝑗+1 ,𝑛 −1 − 𝑢 𝑗−1 ,𝑛 −1 

2 ℎ 
||||𝜏 + 

1 
2 
|||𝑢 𝑗−1 ,𝑛 −1 + 𝑢 𝑗+1 ,𝑛 −1 

||| + 

|||𝑓 𝑗,𝑛 −1 |||𝜏
) 

𝜇

≈

( 

𝑎 
|||||
𝜕𝑢 
(
𝑥 𝑗 , 𝑡 𝑛 −1 

)
𝜕𝑥 

|||||𝜏 + 

|||𝑢 𝑗,𝑛 −1 ||| + 

|||𝑓 𝑗,𝑛 −1 |||𝜏
) 

𝜇. 

Hence, 

𝑅 𝑗,𝑛 | ≤ 𝑐 𝑟 1 ,𝑗,𝑛 𝜇 + 𝑎𝑐 𝑟 2 ,𝑗,𝑛 𝜏𝜇 + 𝑐 𝑟 3 ,𝑗,𝑛 𝜏𝜇 ( 𝑗 = 1 , 2 , ⋯ , 𝐽 − 1 , 

𝑛 = 1 , 2 , ⋯ , 𝑁 ) , (11) 

here 

 𝑟 1 ,𝑗,𝑛 = 

|||𝑢 (𝑥 𝑗 , 𝑡 𝑛 −1 )|||, 𝑐 𝑟 2 ,𝑗,𝑛 = 

|||||
𝜕𝑢 
(
𝑥 𝑗 , 𝑡 𝑛 −1 

)
𝜕𝑥 

|||||, 𝑐 𝑟 3 ,𝑗,𝑛 = 2 |||𝑓 (𝑥 𝑗 , 𝑡 𝑛 −1 )|||, 
here r 1, r 2, and r 3 are symbols of different parts in |𝑅 𝑗,𝑛 |. 
Similarly, it can be deduced that the newly generated round-off error

t the right-end boundary point j = J is 

𝑅 𝐽 ,𝑛 | ≤ 𝑐 𝑟 1 ,𝐽 ,𝑛 𝜇 + 𝑎𝑐 𝑟 2 ,𝐽 ,𝑛 𝜏𝜇 + 𝑐 𝑟 3 ,𝐽 ,𝑛 𝜏𝜇 ( 𝑛 = 1 , 2 , ⋯ , 𝑁 ) . (12)

Setting 

 𝑟 0 = max 
𝑥 ∈[ 0 ,𝑙 ] 

|𝜑 ( 𝑥 ) |, 𝐶̂ 𝑟 1 = max 
𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 

|𝑢 ( 𝑥, 𝑡 ) |, 
̂
 𝑟 2 = max 

𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 
| ∂ 𝑢 ( 𝑥, 𝑡 ) 

∂ 𝑥 
|, 𝐶̂ 𝑟 3 = max 

𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 
2 |𝑓 ( 𝑥, 𝑡 ) |, 

nd with Eqs. (8) , (11) , and (12) , we have 

𝑹 0 ‖∞ ≤ 𝐶 𝑟 0 𝜇, ‖𝑹 𝑛 ‖∞ ≤ 

[
𝐶̂ 𝑟 1 + 

(
𝑎 ̂𝐶 𝑟 2 + 𝐶̂ 𝑟 3 

)
𝜏
]
𝜇 ( 𝑛 = 1 , 2 , ⋯ , 𝑁 ) . (13) 

Define 𝐶 𝑘 as 𝜌𝐶̂ 𝑘 , and 𝑘 can take r 1, r 2, and r 3. When Eq. (2) is stable,

rom Eqs. (7) and (13) it follows that 

𝑅 ( ℎ, 𝜏) ‖∞ = 

∑𝑁 

𝑛 =0 
‖‖𝑹̄ 𝑛 

‖‖∞ ≤ 

(
𝐶 𝑟 0 + 𝐶 𝑟 1 𝜏

−1 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 
)
𝜇. (14)

.3. Truncation error 

Maximum principle analysis is applied to estimate the truncation

rror. The truncation error of Eq. (2) satisfies ( Strikwerda, 2004 ) 

 𝑗,𝑛 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 
2 ( 1 + 𝑎𝜆) 𝑇 𝑗−1 ,𝑛 −1 + 

1 
2 ( 1 − 𝑎𝜆) 𝑇 𝑗+1 ,𝑛 −1 + 𝜏𝛬1 ,𝑗,𝑛 , 𝑗 = 1 , 2 , ⋯ , 

𝐽 − 1 , 

( 1 − 𝑎𝜆) 𝑇 𝑗,𝑛 −1 + 𝑎𝜆𝑇 𝑗−1 ,𝑛 −1 + 𝜏𝛬2 ,𝑗,𝑛 , 𝑗 = 𝐽 , 

(15) 

here 

1 ,𝑗,𝑛 = 

[ 
𝑎ℎ 2 

6 
∂ 3 𝑢 
∂ 𝑥 3 

+ 

𝜏

2 
∂ 2 𝑢 
∂ 𝑡 2 

− 

ℎ 2 

2 𝜏
∂ 2 𝑢 
∂ 𝑥 2 

] 
𝑗,𝑛 −1 

, 𝛬2 ,𝑗,𝑛 = 

[ 
ah 

2 
∂ 2 𝑢 
∂ 𝑥 2 

+ 

𝜏

2 
∂ 2 𝑢 
∂ 𝑡 2 

] 
𝑗,𝑛 −1 

.

Eq. (15) leads to 

 𝑛 = 𝑸 𝑇 𝑛 −1 + 𝜏𝜫𝑛 , (16) 

here 𝜫𝑛 = [ 𝛬1 , 1 ,𝑛 , 𝛬1 , 2 ,𝑛 , ⋯ , 𝛬1 ,𝐽−1 ,𝑛 , 𝛬2 ,𝐽 ,𝑛 ] T . We let 

̂
 𝑡 1 = max 

𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 

1 
6 
| ∂ 3 𝑢 ( 𝑥, 𝑡 ) 

∂ 𝑥 3 
|, 𝐶̂ 𝑡 2 = max 

𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 

1 
2 
| ∂ 2 𝑢 ( 𝑥, 𝑡 ) 

∂ 𝑥 2 
|, 

𝐶̂ 𝑡 3 = max 
𝑥 ∈[ 0 ,𝑙 ] , 𝑡 ∈[ 0 ,𝜌] 

1 
2 
| ∂ 2 𝑢 ( 𝑥, 𝑡 ) 

∂ 𝑡 2 
|, 

nd then one has 

max 
 =1 , 2 , ⋯ ,𝑁 

‖𝜫𝑛 ‖∞ ≤ 𝑎 𝐶̂ 𝑡 1 ℎ 
2 + 𝐶̂ 𝑡 2 

(
𝑎 + ℎ𝜏−1 

)
ℎ + 𝐶̂ 𝑡 3 𝜏, (17) 

where 𝑡 1 , 𝑡 2 , and 𝑡 3 are symbols of different parts in the upper bound
f max 
𝑛 =1 , 2 , ⋯ ,𝑁 

||𝜫𝑛 ||∞. 
For the definition 𝐶 𝑘 = 𝜌𝐶̂ 𝑘 , 𝑘 can also take t 1, t 2, and t 3. When

q. (2) is stable, from Eqs. (16) and (17) the truncation error propagated

o the top temporal layer satisfies 

𝑇 ( ℎ, 𝜏) ‖∞ = ‖𝑻 𝑁 ‖∞ ≤ ‖𝑸 ‖∞‖𝑻 𝑁−1 ‖∞ + 𝜏‖𝜫𝑁 ‖∞ ≤ ‖𝑻 𝑁−1 ‖∞ + 𝜏‖𝜫𝑁 ‖∞
 ‖𝑻 0 ‖∞ + 𝑁𝜏 max 

𝑛 =1 , 2 , ⋯ ,𝑁 
‖𝜫𝑛 ‖∞ = 𝜌 max 

𝑛 =1 , 2 , ⋯ ,𝑁 
‖𝜫𝑛 ‖∞ ≤ 𝑎𝐶 𝑡 1 ℎ 

2 + 𝐶 𝑡 2 
(
𝑎 + ℎ𝜏−1 

)
ℎ + 𝐶 𝑡 3 𝜏. 

(18) 
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.4. Theoretical estimation of the upper bound of total error 

Combining Eqs. (3) , (14) , and (18) , when Eq. (2) is stable, the upper

ound of the total error is estimated as 

𝐸 ( ℎ, 𝜏) ‖∞ ≤ sup ‖𝐸 ( ℎ, 𝜏) ‖∞ = 𝑎𝐶 𝑡 1 ℎ 
2 + 𝐶 𝑡 2 

(
𝑎 + ℎ𝜏−1 

)
ℎ + 𝐶 𝑡 3 𝜏

+ 

(
𝐶 𝑟 0 + 𝐶 𝑟 1 𝜏

−1 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 
)
𝜇. (19) 

. Study on the optimal grid size and time step 

The optimal grid size is firstly analyzed. According to Eq. (19) ,

up ‖𝐸( ℎ, 𝜏) ‖∞ decreases as ℎ decreases, indicating that the selected opti-

al grid size should be as small as possible while ensuring that Eq. (2) is

table; that is, it should be selected at the critical point of scheme sta-

ility, leading to Theorem 1 . 

Theorem 1. If the time step is 𝜏, when Eq. (2) is used to solve the

nitial boundary value problem Eq. (1) of the 1D advection equation,

hen the optimal grid size is given by 

 = 𝑎𝜏. (20)

Next, a study on choosing the optimal time step is performed, where

he grid size takes its optimal value 𝐻 . From Eqs. (19) and (20) , one has

up ‖𝐸 ( 𝐻, 𝜏) ‖∞ = 𝑎 3 𝐶 𝑡 1 𝜏
2 + 2 𝑎 2 𝐶 𝑡 2 𝜏 + 𝐶 𝑡 3 𝜏

+ 

(
𝐶 𝑟 0 + 𝐶 𝑟 1 𝜏

−1 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 
)
𝜇. (21) 

Differentiating Eq. (21) with respect to 𝜏 yields 

∂ sup ‖𝐸 ( 𝐻, 𝜏) ‖∞
∂ 𝜏

= 0 ⇒ 2 𝑎 3 𝐶 𝑡 1 𝜏 + 2 𝑎 2 𝐶 𝑡 2 + 𝐶 𝑡 3 − 𝐶 𝑟 1 𝜏
−2 𝜇 = 0 , (22) 

hich is difficult to solve. For simplicity, we ignore the high-order term

f 𝜏 since 𝜏 is normally very small, and Eq. (22) becomes 

 𝑎 2 𝐶 𝑡 2 + 𝐶 𝑡 3 − 𝐶 𝑟 1 𝜏
−2 𝜇 = 0 , 

hich leads to the following theorem. 

Theorem 2. When Eq. (2) is used to solve the initial boundary value

roblem Eq. (1) of the 1D advection equation, and if the grid size takes

ts optimal value 𝐻 , the optimal time step is given by 

= 

( 

𝐶 𝑟 1 𝜇

2 𝑎 2 𝐶 𝑡 2 + 𝐶 𝑡 3 

) 

1 
2 
. (23) 

In practical computation, a method for determining the optimal step

s provided: first, the optimal time step 𝛤 is determined by Theorem 2 ,

nd then the optimal grid size 𝐻 = 𝑎𝛤 can be determined by Theorem 1 .

Theorem 3 is established by Theorem 2 . 

Theorem 3. When the numerical solution is performed under two

ifferent machine precisions 𝜇1 = 2 − 𝑞 1 and 𝜇2 = 2 − 𝑞 2 with 𝑞 1 and 𝑞 2 ( 𝑞 1 <
 2 ) binary significant digits, respectively, then the ratio 𝐿 of the optimal

ime steps 𝛤1 and 𝛤2 under the two machine precisions, i.e., 𝐿 , satisfies

 = 

𝛤1 
𝛤2 

= 2 
( 𝑞 2 − 𝑞 1 ) 

2 . (24) 

Theorem 3 indicates that the ratio 𝐿 of the optimal time steps under

wo different machine precisions satisfies a universal relation; that is,

 is independent of the differential equation, the initial boundary val-

es and the free terms of Eq. (1) , and it is exclusively associated with

he difference between the numbers of binary significant digits of the

wo machine precisions involved. This universal relation is similar to

hat discovered by Li et al. (2000, 2001) in the numerical solution of

onlinear ODEs. With this universal relation, the optimal time step at

ny machine precision can be immediately determined if the optimal

ime step at another machine precision is available; therefore, it is very

onvenient for practical calculation. 
4 
. Theoretical verification of the CUP 

When Eq. (2) is stable and the grid ratio is fixed to 𝜆0 , we use

q. (19) to obtain 

up ‖𝐸 ( ℎ, 𝜏) ‖∞ = 𝑎𝐶 𝑡 1 𝜆
−2 
0 𝜏

2 + 

[
𝐶 𝑡 2 

(
𝑎 + 𝜆−1 0 

)
𝜆−1 0 + 𝐶 𝑡 3 

]
𝜏

+ 

(
𝐶 𝑟 0 + 𝐶 𝑟 1 𝜏

−1 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 
)
𝜇. (25) 

It should be noted that the grid size ℎ and time step 𝜏 vary simulta-

eously when the grid ratio is fixed, and this situation is different from

hat in Section 4 , in which the grid size is fixed as its optimal value 𝐻 . 

The upper bound sup ‖𝐸( ℎ, 𝜏) ‖∞ of the total error in Eq. (25) is ex-

ressed as 𝐸̃ = 𝑇̃ + 𝑅̃ , where the truncation error term 𝑇̃ = 𝑎𝐶 𝑡 1 𝜆
−2 
0 𝜏

2 +
 𝐶 𝑡 2 ( 𝑎 + 𝜆−1 0 ) 𝜆

−1 
0 + 𝐶 𝑡 3 ] 𝜏 represents the uncertainty caused by the numer-

cal method, the round-off error term 𝑅̃ = ( 𝐶 𝑟 0 + 𝐶 𝑟 1 𝜏
−1 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 ) 𝜇

epresents the uncertainty due to the finite accuracy of the computer,

nd 𝐸̃ is the sum of these two uncertainties. 

Theorem 4. When the precision of the machine is finite and the grid

atio is fixed to 𝜆0 , we have 

̃
 + 𝑅̃ > 2 𝜂

1 
2 
𝜇 + 𝜎𝜇 > 0 , (26)

̃
 ⋅ 𝑅̃ ≈ 𝜂𝜇 > 0 , (27)

here 𝜂𝜇 = [ 𝐶 𝑡 2 ( 𝑎 + 𝜆−1 0 ) 𝜆
−1 
0 + 𝐶 𝑡 3 ] 𝐶 𝑟 1 𝜇 and 𝜎𝜇 = ( 𝐶 𝑟 0 + 𝑎𝐶 𝑟 2 + 𝐶 𝑟 3 ) 𝜇. 

According to the CUP, “the global discretization error due to nu-

erical method and the accumulated round-off error due to calculation

achine are two “adjoint ” variables; they cannot decrease to zero si-

ultaneously, and the smaller one of the two uncertainties, the greater

ill be the uncertainty of the other adjoint variable ” ( Li et al., 2001 ).

rom Eqs. (26) and (27) , 𝑇̃ and 𝑅̃ are exactly the two “adjoint ” vari-

bles in the CUP. The truncation error 𝑇̃ is proportional to the time step

, while the round-off error term 𝑅̃ contains a term inversely propor-

ional to the time step 𝜏. They trade off and cannot be reduced to zero

t the same time, which demonstrates that solving the initial boundary

alue problem Eq. (1) with the Lax–Friedrichs scheme satisfies the CUP.

f a floating-point computer is used for the numerical solution, round-

ff error is inevitable, and the CUP always holds true. When the time

tep 𝜏 decreases, the truncation error decreases while the round-off er-

or increases, and the total error decreases initially and then increases

nder the combined action of both errors. The time step at which the

rror shifts from decreasing to increasing is the optimal time step. Once

he machine accuracy is determined, there will inevitably be an optimal

ime step in the numerical computation. 

. Numerical experiments 

The following two initial boundary value problems of the 1D advec-

ion equation are considered: 

I): 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 𝑡 + 𝑎𝑢 𝑥 = 𝑚 cos ( 𝑥 ) cos ( mt ) − 𝑎 sin ( 𝑥 ) sin ( mt ) , 0 < 𝑥 < 𝑙, 𝑡 > 0 , 

𝑢 (0 , 𝑡 ) = sin ( mt ) , 𝑡 > 0 , 

𝑢 ( 𝑥, 0) = 0 , 0 ≤ 𝑥 ≤ 𝑙, 

hich has the exact solution 𝑢 ( 𝑥, 𝑡 ) = cos ( 𝑥 ) sin ( 𝑚𝑡 ) , and 

I): 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 𝑡 + 𝑎𝑢 𝑥 = 𝑚 ( 𝑡 + 2) 𝑚 −1 e 𝑥 + 𝑎 ( 𝑡 + 2) 𝑚 e 𝑥 , 0 < 𝑥 < 𝑙, 𝑡 > 0 , 

𝑢 (0 , 𝑡 ) = ( 𝑡 + 2) 𝑚 , 𝑡 > 0 , 

𝑢 ( 𝑥, 0) = 2 𝑚 e 𝑥 , 0 ≤ 𝑥 ≤ 𝑙, 

hich has the exact solution 𝑢 ( 𝑥, 𝑡 ) = ( 𝑡 + 2) 𝑚 e 𝑥 . 
We let (e 𝑗,𝑁 ) ∗ = 𝑢 ( 𝑥 𝑗 , 𝑡 𝑁 ) − ( 𝑢 𝑗,𝑁 ) ∗ be the error of the nu-

erical experiments at the top temporal layer, and set 𝑬 

∗ =
 (e 1 ,𝑁 ) ∗ , (e 2 ,𝑁 ) ∗ , ⋯ , (e 𝐽 ,𝑁 ) ∗ ) 

T . Fig. 1 shows the variations of ‖𝑬 

∗ ‖∞
i.e., the error calculated in the numerical experiments) and
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Fig. 1. Variations of the numerical results ‖𝑬 

∗ ‖∞ and theoretical bound sup ‖𝐸( ℎ, 𝜏) ‖∞ with the grid size h , and comparison of the theoretical optimal grid size H 

and numerical optimal grid size H ∗ , with N = 100: (a) machine double precision was used to solve equation (I), with a = 1, m = 1, l = 0.1, and 𝜏 = 10 −6 ; (b) machine 
single precision was used to solve equation (II), with a = 10, m = 2, l = 1, and 𝜏 = 10 −4 . 

Fig. 2. Variations of the numerical results ‖𝑬 

∗ ‖∞ and theoretical bound sup ‖𝐸( ℎ, 𝜏) ‖∞ with the time step 𝜏 when the grid size h takes the optimal value H , and 

comparison of the theoretical optimal time step 𝛤 and numerical optimal time step 𝛤 ∗ : (a) machine single precision was used to solve equation (I), with a = 0.1, 
m = 3, l = 10 − 2 , and 𝜌 = 10 − 2 ; (b) machine double precision was used to solve equation (II), with a = 1, m = 5, l = 10 − 6 , and 𝜌 = 10 − 6 . 
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up ‖𝐸( ℎ, 𝜏) ‖∞ (i.e., the estimated upper bound of the error obtained

y theoretical derivation) with the grid size ℎ . When the grid size takes

ts optimal value 𝐻 , the variations of the numerical experimental re-

ult ‖𝑬 

∗ ‖∞ and the theoretical upper bound sup ‖𝐸( 𝐻, 𝜏) ‖∞ with the

ime step 𝜏 are shown in Fig. 2 . It can be seen from Figs. 1 and 2 that

up ‖𝐸( ℎ, 𝜏) ‖∞ is reliable as the upper bound estimation of ‖𝑬 

∗ ‖∞. The
ptimal grid size and the time step determined by the minimum error of

he numerical solution in the numerical experiments are denoted as 𝐻 

∗ 

nd 𝛤 ∗ , respectively. As shown in Fig. 1 , 𝐻 accurately estimates 𝐻 

∗ . As

llustrated in Fig. 2 , 𝛤 is slightly larger than 𝛤 ∗ , but the error does not

xceed an order of magnitude; thus, 𝛤 is considered reliable. Moreover,

he error increases rapidly when the time step is less than the optimal

alue, which fully demonstrates the necessity of determining the opti-

al time step. 

. Conclusions and prospects 

When using the Lax–Friedrichs scheme to solve the initial boundary

roblem of the 1D advection equation, the truncation and round-off er-

ors in the numerical solution were analyzed, and the propagation law

f errors from low to high temporal layers was studied. A theoretical

stimation for the upper bound of the total error was obtained, with its

eliability verified by numerical experimental results. The relationships

f the upper bound of the total error with the grid size and time step

ere analyzed to determine the theoretical formulae for the optimal

rid size and time step, and the accuracy of these formulas was demon-
5 
trated by the numerical experimental results. On this basis, a universal

elation satisfied by the ratio of the optimal time steps under any two

ifferent machine precisions was presented, which can be conveniently

pplied in practical calculation. The CUP for the numerical solution of

DEs was preliminarily and theoretically verified when the grid ratio

s fixed. This study could be generalized to more complex numerical

chemes for PDEs and atmospheric numerical models for determining

ptimal spatiotemporal resolutions. 

There are two areas for future work. One is the theoretical verifica-

ion of the CUP when the grid ratio is not necessarily fixed. Another is

hat the coefficient 𝐶̂ 𝑘 involves the derivatives of 𝑢 ( 𝑥, 𝑡 ) , which is un-
nown when the function 𝑢 ( 𝑥, 𝑡 ) is undetermined. This problem may be

olved by the following method. When the initial boundary value prob-

em is solved by using a certain grid size and time step, a temporary

umerical solution of 𝑢 ( 𝑥, 𝑡 ) is obtained. With the values of 𝑢 ( 𝑥, 𝑡 ) on the
rid nodes, numerical differentiation can be implemented to estimate

hose derivatives of 𝑢 ( 𝑥, 𝑡 ) involved in the coefficients 𝐶̂ 𝑘 . Then, we can
alculate the optimal grid size and time step to obtain the optimal nu-

erical solution. By using this method, we will improve the practica-

ility of the estimation for the optimal grid size and time step in future

esearch work. 
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