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Abstract  new concept of computational quasi-stability ( C Q S )  is introduced to study the com- 
putational stability ( C S )  of the forced dissipative nonlinear ( FDN ) evolution equations. Based 
on the concept, the CQS criterion of difference scheme of FDN atmospheric equations is ob- 
tained. So it provides the theoretical basis for designing the computational stable difference 
scheme of FDN atmospheric equations. 
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THE computational stable numerical scheme must be  designed if we solve numerically the dynamic equa- 
tions of the nonlinear atmosphere or ocean. Zeng and Ji et (11. have carried out lots of work for the 
adiabatic or non-dissipative nonlinear evolution equations. For the forced dissipative nonlinear ( FDN) 
equations, however, its computational stability (CS)  analysis has not yet been dealt with so far because 
of its inherent difficulties. In practice, it is very important to study the CS of FDN evolution equations. 
This note presents a new concept, i . e . the computational quasi-stability (CQS) , and based on i t ,  the CS 
of FDN evolution equations is investigated. 
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1 Badc description and the concept of CQS 

The complete FDN atmospheric equations can he transformed into an equivalent operator equation in 
Hilbert space as followsi6] : 

p l t = o  = 90' (2)  
where N ( p )  is an anti-adjoint operator, L ( q ) a self-adjoint operator, i . e . 

N ( p )  = -  N " ( p ) ,  ( N ( p ) p .  9) = 0 ,  (3)  
L ( g D )  = L * ( q ) ,  ( L ( q ) p ,  p )  0 .  (4) 

The equal in (4) is true if and only if i( p (i = 0. 
Here we use difference methods to solve the approximate solution of (1)  and (2 )  . Let r be the time 

stepsize, h the space stepsize, setting the mesh ( mh , nr ) , and let pn be the value of p at the time tn . 
We define the inner product of the mesh function as 

( 9 9  6) = z~~40~~~Y ( 5 )  
II  

where p , 6 are two arbitrary abstract functions (They are usually vector functions) , p, , 6, , A, are 
the values of 9, 6 and the unit volume at mth mesh point respectively. The norm of the function e, is de- 
fined as 

1 1  5 0 1 1  = ( 9 ,  (6) 
Hereafter let N ( e, ) and L ( p ) be the general discrete forms of N ( 9) and L ( e, ) respectively. 

The antisymmetric operator in Hilbert space corresponds to the antisymmetric matrix in Rn , and the sym- 
metric positive operator the symmetric positive matrix, so N ( p * ) is an anti-symmetric matrix and L 
( p ) a symmetric positive matrix. 

For eq. ( I ) ,  it is quite difficult to discuss the CS for its difference scheme. It is usually studied 
only when ( ~ 0 " ~ ~  . In the case of f + 0 ,  there is not any result at present. Hence, it is necessary to 
soften the terms and introduce the concept of CQS as follows. 

Definition 1. When the time stepsize r is sufficiently small, if the numerical solution computed 
by the difference method satisfies 

Il pn+l ll s Il pn ll + r c ,  (7) 
where c is a constant depending on :I E ' 1  , then the difference scheme is called the computational quasi- 
stability ( CQS) . 

It is obvious that the CQS is a necessary condition of CS. The difference scheme must be computa- 
tionally instable if it does not satisfy the condition of CQS. The CQS is just the CS for E = 0 or r+O. 

2 Main results 

The general difference scheme of eq . (1  ) is given as follows : 

(8) 
Theorem 1 .  The difference scheme ( 5 )  of eq . ( 1 ) is computationally quasi-stable for 0 < a g 1/ 

2 .  
Proof. Making inner product with a$"' ' + ( 1  - a ) qn for both sides of ( 8 )  , using the properties 

of N(e,'  ) and L(9* ), we have 
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+ ar II € 1 1  /I g~"+ ' l I  + (1 - a ) r  I1 € 1 1  ! I  $ 1 1 .  
So 

I1 p n + l 1 I 2 - 2 a r I I  pn+ l ; I  II  € 1 1  s I I  p n l 1 2 + 2 ( 1  - a ) r i l  pnIl II E l l .  
Therefore for 1/2 s a s 1 one gets 

II pn+' I1 - 2ar II 9n+L II II E II + a2r2 II E 11 
G II Qln 1 1 2  + 2(1 - a > r  II pn II II E II + a2r2 11 c 1 1 2  
G II 9" 1 1 2  + 2ar II pn II II E II + a2r2 11 E 11 ', 

namely, 
II g~"" II s !I pn !I + 2ar II E ll 

6 Il pn ll + r c ,  
where c = 2 1 )  E 11 . So (8) is computationally quasi-stable for 1/2 6 a 6 1 . The proof is completed. 

Especially, for 6 =. 0, c = 0. In this case, one has 

I1 pn+I I1 < I1 pn I1 , 
as a result scheme (8) is computationally stable. 

For the nonlinear equations, the CS criterion of their linearized equations has also reference values. 
lhus  we make an additional analysis for the linearized equation of (1) . The linearized equation of (1) is 

3 + ~ ( 7 ) p  + ~ ( p ) f p  = E, (9) 

Its difference scheme corresponds to the form 
1 - n 

r ' + (N(;) + ~ ( ~ ) ) ( a p " + '  + (1 - a )pn )  = E. (10) 

Theorem 2. The difference scheme ( 10) of Eq . (9) is computationally stable for 1/2 < a 6 1 . 
h f .  Let 91, 9~ be two arbitrary solutions, and 

i i ei = p l -pz ,  i = l , 2 ,  . * * ,  n ,  
and thus 

En+' - en 

r 
+ ( ~ ( o )  + L(?))(M"+' + (1  - a)En) = 0. 

For 1/2 a 1 , it follows that 
0 ! 

I 1 6 1 0 , ,  

and therefore the scheme is computationally stable. The proof is completed. 
According to the above results, when 1/2 < a 6 1 , scheme, (8) is computationally stable for the lin- 

earized equation (with the external facing) or the adiabatic case (with the nonlinear terms) and is compu- 
tationally quasi-stable for the FDN equation. Therefore , the nonlinear interaction and the effect of the 
external focing a% the main factors which cause the e m r  propagation for CQS scheme while disregarding 
round-off e m r .  

3 Conclusion 

Because of the complexity of CS of FDN evolution equations, this note presents a new concept, 
CQS, to study it, and gives the CQS criterion of the difference scheme of the FDN atmospheric equa- 
tions. The criterion is also the CS criterion of the linearized equations or the adiabatic case, and the CQS 
is a necessary condition of the CS, so the computationally stable scheme must be in the criterion. The re- 
sults furnish the necessary theoretical basis for designing the computationally stable difference scheme of 
the FDN atmospheric equations. 
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